会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • NANOTUBE WIRING
    • NANOTUBE接线
    • US20100068621A1
    • 2010-03-18
    • US12445128
    • 2007-10-18
    • Ivan ExnarShaik Mohammed ZakeeruddinMichael GratzelLadislav Kavan
    • Ivan ExnarShaik Mohammed ZakeeruddinMichael GratzelLadislav Kavan
    • H01M4/60H01M4/02
    • H01M10/0525H01M2/1673H01M4/0416H01M4/13H01M4/136H01M4/139H01M4/36H01M4/362H01M4/5825H01M4/60H01M4/625Y10S977/75
    • This invention concerns a novel method for surface derivatization of electrode materials for Li-ion batteries. The derivatization is based on adsorption of a composite assembly consisting of amphiphilic redox active molecule attached to single walled carbon nanotube (SWCNT). Its role consists in the enhancement of electronic conductivity of electrode materials, such as phosphate olivines, without requesting any significant increase of the electrode volume and mass. The SWCNT is linked to the redox molecule via non-covalent or covalent interaction with the hydrophobic part of the molecule or electrostatic interaction. The hydrophilic part of the molecule serves as the anchoring site for surface modification of the electrode active material. The redox potential of the molecule is close to the redox potential of the electrode active material. The adsorbed assembly of redox-molecule & SWCNT thus improves the charge transfer from a current collector to the electrode active material.
    • 本发明涉及用于锂离子电池的电极材料的表面衍生化的新方法。 衍生化基于由连接到单壁碳纳米管(SWCNT)的两亲性氧化还原活性分子组成的复合组件的吸附。 其作用在于提高诸如磷酸橄榄石之类的电极材料的电子传导性,而不需要电极体积和质量的显着增加。 SWCNT通过与分子的疏水部分或静电相互作用的非共价或共价相互作用与氧化还原分子连接。 分子的亲水部分用作电极活性材料的表面改性的锚定位点。 分子的氧化还原电位接近电极活性物质的氧化还原电位。 因此,氧化还原分子和SWCNT的吸附组件改善了从集电器到电极活性材料的电荷转移。
    • 3. 发明授权
    • Nanotube wiring
    • 纳米管接线
    • US08097361B2
    • 2012-01-17
    • US12445128
    • 2007-10-18
    • Ivan ExnarShaik Mohammed ZakeeruddinMichael GratzelLadislav Kavan
    • Ivan ExnarShaik Mohammed ZakeeruddinMichael GratzelLadislav Kavan
    • H01M4/60H01M4/13D01F9/12
    • H01M10/0525H01M2/1673H01M4/0416H01M4/13H01M4/136H01M4/139H01M4/36H01M4/362H01M4/5825H01M4/60H01M4/625Y10S977/75
    • This invention concerns a novel method for surface derivatization of electrode materials for Li-ion batteries. The derivatization is based on adsorption of a composite assembly consisting of amphiphilic redox active molecule attached to single walled carbon nanotube (SWCNT). Its role consists in the enhancement of electronic conductivity of electrode materials, such as phosphate olivines, without requesting any significant increase of the electrode volume and mass. The SWCNT is linked to the redox molecule via non-covalent or covalent interaction with the hydrophobic part of the molecule or electrostatic interaction. The hydrophilic part of the molecule serves as the anchoring site for surface modification of the electrode active material. The redox potential of the molecule is close to the redox potential of the electrode active material. The adsorbed assembly of redox-molecule & SWCNT thus improves the charge transfer from a current collector to the electrode active material.
    • 本发明涉及用于锂离子电池的电极材料的表面衍生化的新方法。 衍生化基于由连接到单壁碳纳米管(SWCNT)的两亲性氧化还原活性分子组成的复合组件的吸附。 其作用在于提高诸如磷酸橄榄石之类的电极材料的电子传导性,而不需要电极体积和质量的显着增加。 SWCNT通过与分子的疏水部分或静电相互作用的非共价或共价相互作用与氧化还原分子连接。 分子的亲水部分用作电极活性材料的表面改性的锚定位点。 分子的氧化还原电位接近电极活性物质的氧化还原电位。 因此,氧化还原分子和SWCNT的吸附组件改善了从集电器到电极活性材料的电荷转移。
    • 9. 发明申请
    • Method for Manufacturing LiMnPO4
    • 制造LiMnPO4的方法
    • US20090184296A1
    • 2009-07-23
    • US12084200
    • 2006-10-27
    • Motoshi IsonoThierry DrezenIvan ExnarIvo Teerlinck
    • Motoshi IsonoThierry DrezenIvan ExnarIvo Teerlinck
    • H01B1/02C01B25/30
    • C01B25/45C01B25/377H01M4/136H01M4/1397H01M4/5825H01M4/624H01M10/052
    • The main object of the invention is to obtain LiMnPO4 having an excellent crystalline and a high purity at a lower temperature. The present invention provides a method for manufacturing LiMnPO4 including the steps of: precipitating for obtaining precipitate of manganese hydroxide (Mn(OH)x) by adding a precipitant to a Mn source solution in which a Mn source is dissolved; reducing for obtaining a reduced dispersion solution by dispersing the precipitate in a reducing solvent; adding for obtaining an added dispersion solution by adding a Li source solution and a P source solution to the reduced dispersion solution; pH adjusting for adjusting the pH of the added dispersion solution in the range of 3 to 6 to obtain a pH-adjusted dispersion solution; and synthesizing for synthesizing by reacting the pH-controlled dispersion solution by a heating under pressure condition.
    • 本发明的主要目的是获得在较低温度下具有优异结晶性和高纯度的LiMnPO4。 本发明提供了一种LiMnPO4的制造方法,包括以下步骤:通过在其中溶解Mn源的Mn源溶液中加入沉淀剂来沉淀氢氧化锰(Mn(OH)x)的沉淀物; 还原以通过将沉淀物分散在还原溶剂中来获得降低的分散溶液; 添加用于通过向还原的分散溶液中加入Li源溶液和P源溶液来获得添加的分散溶液; pH调节用于调节添加的分散液的pH在3至6的范围内,以获得pH调节的分散液; 并通过在压力条件下加热使pH控制的分散液反应合成合成。
    • 10. 发明授权
    • Synthesis of nanoparticles of lithium metal phosphate positive material for lithium secondary battery
    • 锂二次电池锂金属磷酸盐正极材料纳米颗粒的合成
    • US08313863B2
    • 2012-11-20
    • US12296204
    • 2006-04-06
    • Ivan ExnarThierry Drezen
    • Ivan ExnarThierry Drezen
    • H01M4/13
    • H01M4/5825C01B25/45H01M4/136H01M4/1397H01M4/625H01M10/052
    • Novel process for the preparation of finely divided, nano-structured, olivine lithium metal phosphates (LiMPO4) (where metal M is iron, cobalt, manganese, nickel, vanadium, copper, titanium and mix of them) materials have been developed. This so called Polyol” method consists of heating of suited precursor materials in a multivalent, high-boiling point multivalent alcohol like glycols with the general formula HO—(—C2H4O—), —H where n=1-10 or HO—(—C3H6O—)n—H where n=1-10, or other polyols with the general formula HOCH2—(—C3H5OH—)n—H where n=1-10, like for example the tridecane-1,4,7,10,13-pentaol. A novel method for implementing the resulting materials as cathode materials for Li.-ion batteries is also developed.
    • 已经开发了用于制备精细分散的纳米结构的橄榄石锂金属磷酸盐(LiMPO4)(其中金属M是铁,钴,锰,镍,钒,铜,钛和它们的混合物)的新方法。 这种所谓的多元醇方法包括在多价,高沸点多价醇如乙二醇中加热合适的前体材料,通式为HO - ( - C 2 H 4 O - )-H,其中n = 1-10或HO - ( - C 3 H 6 O - )n-H,其中n = 1-10,或其它n = 1-10的通式为HOCH 2 - ( - C 3 H 5 OH))n -H的其它多元醇,例如十三烷-1,4,7,10, 13-pentaol。 还开发了用于将所得材料用作锂离子电池的阴极材料的新颖方法。