会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Process model generated using biased process mining
    • 使用偏向流程挖掘生成的流程模型
    • US09208449B2
    • 2015-12-08
    • US13833216
    • 2013-03-15
    • International Business Machines Corporation
    • Richard T. GoodwinPietro MazzoleniAubrey J. Rembert
    • G06F15/18G06N99/00G06N5/02G06Q40/00
    • G06N99/005G06N5/022G06Q10/067G06Q40/00
    • Embodiments relate to a method, system, and computer program product for a process model. The method includes extracting data associated with a process execution trace of a running process and extracting any prior knowledge data relating to the running process. The method also includes calculating at least one transition confidence parameter for the prior knowledge data; and identifying any existing process models relating to the running process. A confidence trace bias is also generated for any existing process model identified. An enhanced bias value is then calculated by combining the confidence trace bias value and value of the transition confidence parameter. Using as input the extracted process execution trace data, the prior knowledge data, the identified existing model and the enhanced bias value, a learned process model is then generated.
    • 实施例涉及用于过程模型的方法,系统和计算机程序产品。 该方法包括提取与运行进程的进程执行跟踪关联的数据,并提取与运行进程有关的任何先验知识数据。 该方法还包括为现有知识数据计算至少一个转换置信度参数; 并识别与运行过程相关的任何现有过程模型。 任何已识别的现有流程模型也产生置信痕迹偏差。 然后通过组合置信跟踪偏差值和转移置信度参数的值来计算增强的偏差值。 使用提取的过程执行跟踪数据,现有知识数据,识别的现有模型和增强偏差值作为输入,生成学习过程模型。
    • 5. 发明申请
    • PROCESS MODEL GENERATED USING BIASED PROCESS MINING
    • 使用偏心过程采矿生成的工艺模型
    • US20140279769A1
    • 2014-09-18
    • US13970826
    • 2013-08-20
    • International Business Machines Corporation
    • Richard T. GoodwinPietro MazzoleniAubrey J. Rembert
    • G06N99/00
    • G06N99/005G06N5/022G06Q10/067G06Q40/00
    • Embodiments relate to a method, system, and computer program product for a process model. The method includes extracting data associated with a process execution trace of a running process and extracting any prior knowledge data relating to the running process. The method also includes calculating at least one transition confidence parameter for the prior knowledge data; and identifying any existing process models relating to the running process. A confidence trace bias is also generated for any existing process model identified. An enhanced bias value is then calculated by combining the confidence trace bias value and value of the transition confidence parameter. Using as input the extracted process execution trace data, the prior knowledge data, the identified existing model and the enhanced bias value, a learned process model is then generated.
    • 实施例涉及用于过程模型的方法,系统和计算机程序产品。 该方法包括提取与运行进程的进程执行跟踪关联的数据,并提取与运行进程有关的任何先验知识数据。 该方法还包括为现有知识数据计算至少一个转换置信度参数; 并识别与运行过程相关的任何现有过程模型。 任何已识别的现有流程模型也产生置信痕迹偏差。 然后通过组合置信跟踪偏差值和转移置信度参数的值来计算增强的偏差值。 使用提取的过程执行跟踪数据,现有知识数据,识别的现有模型和增强偏差值作为输入,生成学习过程模型。