会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • MgZnO based UV detectors
    • 基于MgZnO的紫外检测器
    • US07132668B2
    • 2006-11-07
    • US10311997
    • 2001-06-26
    • Ratnakar VisputeThirumalai VenkatesanWei YangSupab Choopun
    • Ratnakar VisputeThirumalai VenkatesanWei YangSupab Choopun
    • G01J5/00
    • H01L31/109H01L31/022408H01L31/0236H01L31/0288Y02E10/50
    • Photoconductive devices (1,2) comprising MgxZn1−xO, that is preferably epitaxially deposited on a substrate (21), optionally also including a buffer layer (22), wherein x has a value such that the layer is sensitive to UV light. The a MgZnO device (2) having predetermined electrical and optical properties and first and second electrodes (3) deposited on a surface of the device, the second electrode being spaced from the first electrode. A voltage source (4) is connected across the first and second electrodes to create an electric field within the device. In operation, when the surface of the device upon which the electrodes are deposited is subjected to a photon emission, electron-hole pairs are created within the device and flow within the device because of the electric field.
    • 优选外延沉积在衬底(21)上的包含Mg x Zn 1-x O O的光导器件(1,2),任选地还包括缓冲层(22 ),其中x具有使得该层对UV光敏感的值。 具有预定电气和光学特性的MgZnO器件(2)和沉积在器件表面上的第一和第二电极(3),第二电极与第一电极间隔开。 电压源(4)跨越第一和第二电极连接以在器件内产生电场。 在操作中,当沉积有电极的器件的表面经受光子发射时,由于电场,在器件内部产生电子 - 空穴对并在器件内流动。
    • 3. 发明授权
    • Superconducting thin film system using a garnet substrate
    • 使用石榴石基板的超导薄膜系统
    • US5635453A
    • 1997-06-03
    • US362894
    • 1994-12-23
    • Alberto PiqueKolagani S. HarshavardhanThirumalai Venkatesan
    • Alberto PiqueKolagani S. HarshavardhanThirumalai Venkatesan
    • C30B23/02H01L39/24B32B9/00
    • H01L39/2461C30B23/02C30B29/22C30B29/225Y10S428/93Y10S505/701
    • A superconducting thin film system (10) is provided for high frequency microwave applications where a single crystal high temperature superconducting layer (18) is integrated with a garnet substrate (12). A first perovskite compound buffer layer (14) is epitaxially grown on an upper surface of the garnet substrate layer (12) and defines a lattice constant less than the lattice constant of the garnet substrate layer (12). A second perovskite layer (16) is epitaxially grown on an upper surface of the first perovskite layer (14) and defines a lattice constant less than the lattice constant of the first perovskite layer. A high temperature superconducting layer (18) is epitaxially grown on an upper surface of the second perovskite layer (16) and is lattice matched to the second perovskite compound layer (16) for incorporation of passive components within the high temperature superconducting layer (18) having high frequency microwave applications.
    • 为高频微波应用提供超导薄膜系统(10),其中单晶高温超导层(18)与石榴石衬底(12)集成。 在石榴石基材层(12)的上表面上外延生长第一钙钛矿化合物缓冲层(14),并限定小于石榴石基材层(12)的晶格常数的晶格常数。 在第一钙钛矿层(14)的上表面上外延生长第二钙钛矿层(16),并限定小于第一钙钛矿层的晶格常数的晶格常数。 在第二钙钛矿层(16)的上表面上外延生长高温超导层(18),并且与第二钙钛矿化合物层(16)晶格匹配,以在高温超导层(18)内并入无源部件, 具有高频微波应用。
    • 6. 发明授权
    • Fault isolation of circuit defects using comparative magnetic field imaging
    • 使用比较磁场成像对电路缺陷进行故障隔离
    • US07019521B2
    • 2006-03-28
    • US10940715
    • 2004-09-15
    • Antonio OrozcoElena TalanovaAlfred B. CawthorneLee KnaussThirumalai Venkatesan
    • Antonio OrozcoElena TalanovaAlfred B. CawthorneLee KnaussThirumalai Venkatesan
    • G01N27/82G01R33/02
    • G01R31/311
    • Circuit flaws in microelectronic circuitry present regions of high resistance in which a current distribution deviates from that of a defect-free circuit. The altered current distribution emits a correspondingly altered magnetic field in accordance with Ampere's Law. When compared with the magnetic field of a defect-free circuit, the anomaly in the magnetic field of the defective device is detected and the location of the circuit flaw may be determined therefrom. As the anomaly in the magnetic field is very small in magnitude, a sensitive magnetic microscope is utilized to obtain images of the magnetic fields of a defect-free reference device and a device-under-test. The distance between the magnetic sensor and the devices being scanned is precisely controlled to minimize influences of scanning distance on the difference in measured magnetic field strength. Comparative image analysis reveals the location of the circuit flaw. Maximal image registration through image interpolation, displacement and resampling optimizes the comparative image analysis.
    • 微电子电路中的电路缺陷呈现高电阻区域,其中电流分布偏离无缺陷电路的电流分布。 改变的电流分布根据安培定律发射相应改变的磁场。 当与无缺陷电路的磁场相比时,检测到故障装置的磁场中的异常,并且可以从其确定电路缺陷的位置。 由于磁场中的异常非常小,所以使用敏感磁显微镜来获得无缺陷参考装置的磁场图像和被测装置。 精确地控制磁传感器和被扫描的装置之间的距离,以最小化扫描距离对测得的磁场强度的差异的影响。 比较图像分析显示电路缺陷的位置。 通过图像插值,位移和重采样的最大图像配准优化了比较图像分析。
    • 7. 发明申请
    • Fault isolation of circuit defects using comparative magnetic field imaging
    • 使用比较磁场成像对电路缺陷进行故障隔离
    • US20050057246A1
    • 2005-03-17
    • US10940715
    • 2004-09-15
    • Antonio OrozcoElena TalanovaAlfred CawthorneLee KnaussThirumalai Venkatesan
    • Antonio OrozcoElena TalanovaAlfred CawthorneLee KnaussThirumalai Venkatesan
    • G01N27/82G01R31/311G03G15/08
    • G01R31/311
    • Circuit flaws in microelectronic circuitry present regions of high resistance in which a current distribution deviates from that of a defect-free circuit. The altered current distribution emits a correspondingly altered magnetic field in accordance with Ampere's Law. When compared with the magnetic field of a defect-free circuit, the anomaly in the magnetic field of the defective device is detected and the location of the circuit flaw may be determined therefrom. As the anomaly in the magnetic field is very small in magnitude, a sensitive magnetic microscope is utilized to obtain images of the magnetic fields of a defect-free reference device and a device-under-test. The distance between the magnetic sensor and the devices being scanned is precisely controlled to minimize influences of scanning distance on the difference in measured magnetic field strength. Comparative image analysis reveals the location of the circuit flaw. Maximal image registration through image interpolation, displacement and resampling optimizes the comparative image analysis.
    • 微电子电路中的电路缺陷呈现高电阻区域,其中电流分布偏离无缺陷电路的电流分布。 改变的电流分布根据安培定律发射相应改变的磁场。 当与无缺陷电路的磁场相比时,检测到故障装置的磁场中的异常,并且可以从其确定电路缺陷的位置。 由于磁场中的异常非常小,所以使用敏感磁显微镜来获得无缺陷参考装置的磁场图像和被测装置。 精确地控制磁传感器和被扫描的装置之间的距离,以最小化扫描距离对测得的磁场强度的差异的影响。 比较图像分析显示电路缺陷的位置。 通过图像插值,位移和重采样的最大图像配准优化了比较图像分析。
    • 8. 发明授权
    • Superconducting garnet thin film system
    • 超导石榴石薄膜系统
    • US6074990A
    • 2000-06-13
    • US791330
    • 1997-01-31
    • Alberto PiqueKolagani S. HarshavardhanThirumalai Venkatesan
    • Alberto PiqueKolagani S. HarshavardhanThirumalai Venkatesan
    • C30B23/02H01L39/24H01L39/02B05D5/12
    • C30B23/02C30B29/22C30B29/225H01L39/2461Y10S428/93Y10S505/701Y10S505/729
    • A superconducting garnet thin film system (10) is provided for high frequency microwave applications where a single crystal high temperature superconducting (HTSC) layer (18) is integrated with a garnet substrate (12). A first perovskite compound buffer layer (14) is epitaxially grown on an upper surface of the garnet substrate layer (12) and defines a lattice constant less than the lattice constant of the garnet substrate layer (12) with the first perovskite layer being aligned in a cube on cube parallel orientation with respect to the garnet substrate layer (12). A second perovskite layer (16) is epitaxially grown on an upper surface of the first perovskite layer (14) at an orientation of 45.degree. to first layer (14) and defines a lattice constant less than the lattice constant of the first perovskite layer. The HTSC layer (18) is epitaxially grown on an upper surface of the second perovskite layer (16) in parallel aligned orientation and is lattice matched to the second perovskite compound layer (16) for incorporation of passive components within the high temperature superconducting layer (18) having high frequency microwave applications.
    • 提供了一种用于高频微波应用的超导石榴石薄膜系统(10),其中单晶高温超导(HTSC)层(18)与石榴石衬底(12)集成。 第一钙钛矿化合物缓冲层(14)在石榴石基材层(12)的上表面外延生长,并且定义了小于石榴石基材层(12)的晶格常数的晶格常数,其中第一钙钛矿层被排列成 相对于石榴石基材层(12)的立方体平行取向的立方体。 第二钙钛矿层(16)在第一钙钛矿层(14)的上表面上以与第一层(14)成45°的取向外延生长,并且限定了小于第一钙钛矿层的晶格常数的晶格常数。 HTSC层(18)以平行排列的方向外延生长在第二钙钛矿层(16)的上表面上,并且与第二钙钛矿化合物层(16)晶格匹配,以将高分子超导层 18)具有高频微波应用。
    • 9. 发明授权
    • Pulsed laser passive filter deposition system
    • 脉冲激光无源滤波器沉积系统
    • US5458686A
    • 1995-10-17
    • US398146
    • 1995-03-03
    • Alberto PiqueThirumalai VenkatesanSteven Green
    • Alberto PiqueThirumalai VenkatesanSteven Green
    • C23C14/04C23C14/28C23C14/00
    • C23C14/28C23C14/044
    • This invention directs itself to a pulsed laser passive filter deposition system (10) which provides a blocking and transparent mask mechanism (34) placed between a target (14) and a substrate (12) to be coated. The blocking and transparent mask mechanism (34) includes a blocking member (36) which casts a blocking shadow having a greater cross-sectional area than the substrate (12), to block linearly travelling clustered species particulates (22) from impinging on the substrate (12). The blocking and transparent mask mechanism (34) also includes annularly shaped disk members (38 and 44) having openings (40 and 46) formed in a central portion to allow passage of the atomic species (20) of the composition being coated on the substrate (12) where the atomic species (20) is deflected by impingement with background gas molecules (26). In this manner, the substrate (12) is coated with the atomic species (20) in a uniform coating without having the clustered species (22) being coated on the substrate (12).
    • 本发明将其自身引导到脉冲激光无源滤波器沉积系统(10),其提供放置在待涂覆的靶(14)和基底(12)之间的阻挡和透明掩模机构(34)。 阻挡和透明掩模机构(34)包括阻挡构件(36),其阻挡具有比衬底(12)更大的横截面面积的阻挡阴影,以阻挡线性移动的聚集物质微粒(22)撞击到衬底 (12)。 阻挡和透明掩模机构(34)还包括具有形成在中心部分中的开口(40和46)的环形盘状构件(38和44),以允许待涂覆的组合物的原子物质(20)通过基底 (12)其中原子物质(20)通过与背景气体分子(26)的冲击而偏转。 以这种方式,基板(12)以均匀的涂层涂覆有原子物质(20),而不会将聚集物质(22)涂覆在基底(12)上。