会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • SCALABLE STREAMING DECISION TREE LEARNING
    • 可定量流动决策树的学习
    • US20170061327A1
    • 2017-03-02
    • US14953457
    • 2015-11-30
    • International Business Machines Corporation
    • Wei Shan DongPeng GaoGuo Qiang HuChang Sheng LIXu Liang LiChun Yang MaZhi WangXin Zhang
    • G06N99/00G06N5/02
    • G06N5/02G06N5/025
    • In one embodiment, a computer-implemented method includes receiving training data including a plurality of records, each record having a plurality of attributes. The training data is horizontally parallelized across two or more processing elements. This horizontal parallelizing includes dividing the training data into two or more subsets of records; assigning each subset of records to a corresponding processing element of the two or more processing elements; transmitting each subset of records to its assigned processing element; and sorting, at the two or more processing elements, the two or more subsets of records to two or more candidate leaves of a decision tree. The output from horizontally parallelizing is converted into input for vertically parallelizing the training data. The training data is vertically parallelized across the two or more processing elements. The decision tree is grown based at least in part on the horizontally parallelizing, the converting, and the vertically parallelizing.
    • 在一个实施例中,计算机实现的方法包括接收包括多个记录的训练数据,每个记录具有多个属性。 训练数据在两个或多个处理元件之间水平并行化。 这种水平并行化包括将训练数据分成两个或更多个记录子集; 将每个记录子集分配给所述两个或多个处理元件的相应处理元件; 将每个记录子集传送到其分配的处理元件; 并且在所述两个或更多个处理元素处将所述两个或多个记录子集分类到决策树的两个或更多个候选叶。 水平并行化的输出被转换为用于垂直并行化训练数据的输入。 训练数据跨越两个或多个处理元件垂直并行化。 决策树至少部分地基于水平并行化,转换和垂直并行化生长。