会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Identification of topics for online discussions based on language patterns
    • 基于语言模式识别在线讨论的主题
    • US07739261B2
    • 2010-06-15
    • US11763282
    • 2007-06-14
    • Hua-Jun ZengHua LiJian HuZheng ChenDuo ZhangJian Wang
    • Hua-Jun ZengHua LiJian HuZheng ChenDuo ZhangJian Wang
    • G06F17/30
    • G06F17/30731G06Q30/02
    • A topic identification system identifies topics of online discussions by iteratively identifying topic words or keywords of the online discussions and identifying language patterns associated with those keywords. The topic identification system starts out with an initial set of keywords and identifies language patterns that each include a keyword. The topic identification system then uses the identified language patterns to identify additional keywords of the online discussion that match the patterns. The topic identification system then again identifies language patterns using the keywords including the newly identified keywords. The topic identification system may repeat the process of identifying language patterns and keywords until a termination criterion is satisfied.
    • 主题识别系统通过迭代地识别在线讨论的主题或关键字并识别与这些关键字相关联的语言模式来识别在线讨论的主题。 主题识别系统以一组初始关键字开始,并识别每个关键字的语言模式。 然后,主题识别系统使用所识别的语言模式来识别与模式匹配的在线讨论的附加关键字。 然后,主题识别系统再次使用包括新确定的关键字的关键字来识别语言模式。 主题识别系统可以重复识别语言模式和关键字的过程,直到满足终止标准。
    • 7. 发明授权
    • User query mining for advertising matching
    • 用户查询挖掘广告匹配
    • US08285745B2
    • 2012-10-09
    • US11849136
    • 2007-08-31
    • Hua LiHuaJun ZengJian HuZheng ChenJian Wang
    • Hua LiHuaJun ZengJian HuZheng ChenJian Wang
    • G06F17/30
    • G06F17/30861G06F17/30672G06Q30/02
    • Systems and methods to determine relevant keywords from a user's search query sessions are disclosed. The described method includes identifying search session logs of a user, segmenting the search session logs into one or more search sessions. After the segmentation, the search sessions are analyzed to compose a list of semantically relevant keyword sets including at least a first keyword set and a second keyword set. The described method further includes determining a semantic relevance between the first and second keyword sets according to the frequency at which the first and second keyword sets are reported in the query results and displaying one or more semantically high relevant keyword sets after being filtered by a threshold.
    • 公开了从用户的搜索查询会话确定相关关键词的系统和方法。 所描述的方法包括识别用户的搜索会话日志,将搜索会话日志分割成一个或多个搜索会话。 在分割之后,分析搜索会话以构成包括至少第一关键词集合和第二关键字集合的语义相关关键字集合的列表。 所描述的方法还包括根据在查询结果中报告第一和第二关键字集合的频率来确定第一和第二关键字集合之间的语义相关性,并且在被阈值过滤之后显示一个或多个语义上相关的关键字集合 。
    • 8. 发明申请
    • USER QUERY MINING FOR ADVERTISING MATCHING
    • 用户查询采购广告匹配
    • US20090063461A1
    • 2009-03-05
    • US11849136
    • 2007-08-31
    • Jian WangHua LiHuaJun ZengJian HuZheng Chen
    • Jian WangHua LiHuaJun ZengJian HuZheng Chen
    • G06F7/06G06F17/30
    • G06F17/30861G06F17/30672G06Q30/02
    • Systems and methods to determine relevant keywords from a user's search query sessions are disclosed. The described method includes identifying search session logs of a user, segmenting the search session logs into one or more search sessions. After the segmentation, the search sessions are analyzed to compose a list of semantically relevant keyword sets including at least a first keyword set and a second keyword set. The described method further includes determining a semantic relevance between the first and second keyword sets according to the frequency at which the first and second keyword sets are reported in the query results and displaying one or more semantically high relevant keyword sets after being filtered by a threshold.
    • 公开了从用户的搜索查询会话确定相关关键词的系统和方法。 所描述的方法包括识别用户的搜索会话日志,将搜索会话日志分割成一个或多个搜索会话。 在分割之后,分析搜索会话以构成包括至少第一关键词集合和第二关键字集合的语义相关关键字集合的列表。 所描述的方法还包括根据在查询结果中报告第一和第二关键字集合的频率来确定第一和第二关键字集合之间的语义相关性,并且在被阈值过滤之后显示一个或多个语义上相关的关键字集合 。
    • 10. 发明授权
    • Text classification by weighted proximal support vector machine based on positive and negative sample sizes and weights
    • 基于正,负样本大小和权重的加权近端支持向量机进行文本分类
    • US07707129B2
    • 2010-04-27
    • US11384889
    • 2006-03-20
    • Dong ZhuangBenyu ZhangZheng ChenHua-Jun ZengJian Wang
    • Dong ZhuangBenyu ZhangZheng ChenHua-Jun ZengJian Wang
    • G06F15/18G06E1/00G06E3/00
    • G06F17/30707G06K9/6269
    • Embodiments of the invention relate to improvements to the support vector machine (SVM) classification model. When text data is significantly unbalanced (i.e., positive and negative labeled data are in disproportion), the classification quality of standard SVM deteriorates. Embodiments of the invention are directed to a weighted proximal SVM (WPSVM) model that achieves substantially the same accuracy as the traditional SVM model while requiring significantly less computational time. A weighted proximal SVM (WPSVM) model in accordance with embodiments of the invention may include a weight for each training error and a method for estimating the weights, which automatically solves the unbalanced data problem. And, instead of solving the optimization problem via the KKT (Karush-Kuhn-Tucker) conditions and the Sherman-Morrison-Woodbury formula, embodiments of the invention use an iterative algorithm to solve an unconstrained optimization problem, which makes WPSVM suitable for classifying relatively high dimensional data.
    • 本发明的实施例涉及对支持向量机(SVM)分类模型的改进。 当文本数据显着不平衡(即正负标签数据不成比例)时,标准SVM的分类质量恶化。 本发明的实施例涉及一种加权近端SVM(WPSVM)模型,其实现与传统SVM模型基本相同的精度,同时需要显着更少的计算时间。 根据本发明的实施例的加权近端SVM(WPSVM)模型可以包括每个训练误差的权重和用于估计权重的方法,其自动地解决不平衡数据问题。 而且,不是通过KKT(Karush-Kuhn-Tucker)条件和Sherman-Morrison-Woodbury公式来解决优化问题,而是本发明的实施例使用迭代算法来解决无约束优化问题,这使得WPSVM适合于相对分类 高维数据。