会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Scalable probabilistic latent semantic analysis
    • 可扩展概率潜在语义分析
    • US07844449B2
    • 2010-11-30
    • US11392763
    • 2006-03-30
    • Chenxi LinJie HanGuirong XueHua-Jun ZengBenyu ZhangZheng ChenJian Wang
    • Chenxi LinJie HanGuirong XueHua-Jun ZengBenyu ZhangZheng ChenJian Wang
    • G06F17/27
    • G06F17/2785
    • A scalable two-pass scalable probabilistic latent semantic analysis (PLSA) methodology is disclosed that may perform more efficiently, and in some cases more accurately, than traditional PLSA, especially where large and/or sparse data sets are provided for analysis. The improved methodology can greatly reduce the storage and/or computational costs of training a PLSA model. In the first pass of the two-pass methodology, objects are clustered into groups, and PLSA is performed on the groups instead of the original individual objects. In the second pass, the conditional probability of a latent class, given an object, is obtained. This may be done by extending the training results of the first pass. During the second pass, the most likely latent classes for each object are identified.
    • 公开了一种可扩展的双向可伸缩概率潜在语义分析(PLSA)方法,其可以比传统的PLSA更有效地执行,在某些情况下可以更准确地执行,特别是在提供大型和/或稀疏数据集用于分析的情况下。 改进的方法可以大大降低培训PLSA模型的存储和/或计算成本。 在双路方法的第一遍中,对象被聚集成组,并且PLSA在组而不是原始的单个对象上执行。 在第二遍中,获得给定对象的潜在类的条件概率。 这可以通过扩展第一遍的训练结果来完成。 在第二遍期间,识别每个对象最可能的潜在类。
    • 3. 发明申请
    • IDENTIFYING INFLUENTIAL PERSONS IN A SOCIAL NETWORK
    • 在社会网络中识别受影响人
    • US20080070209A1
    • 2008-03-20
    • US11533742
    • 2006-09-20
    • Dong ZhuangBenyu ZhangHeng ZhangJeremy TantrumTeresa MahHua-Jun ZengZheng ChenJian Wang
    • Dong ZhuangBenyu ZhangHeng ZhangJeremy TantrumTeresa MahHua-Jun ZengZheng ChenJian Wang
    • G09B19/00
    • G06Q30/02G06Q10/10
    • An influential persons identification system and method for identifying a set of influential persons (or influencers) in a social network (such as an online social network). The influential persons set is generated such that by sending a message to the set the message will be propagated through the network at the greatest speed and coverage. A ranking of users is generated, and a pruning process is performed starting with the top-ranked user and working down the list. For each user on the list, the user is identified as an influencer and then the user and each of his friends are deleted from the social network users list. Next, the same process is performed for the second-ranked user, the third-ranked user, and so forth. The process terminates when the list of users of the social network is exhausted or the desired number of influencers on the influential person set is reached.
    • 在社交网络(如在线社交网络)中识别一组有影响力的人(或影响者)的有影响力的人员识别系统和方法。 产生有影响力的人员,通过发送消息给消息集,消息将以最大的速度和覆盖率通过网络传播。 生成用户排名,并从顶级用户开始执行修剪过程,并在列表中执行操作。 对于列表中的每个用户,用户被识别为影响者,然后从社交网络用户列表中删除用户和他的每个朋友。 接下来,对于第二等级的用户,第三等级的用户等执行相同的处理。 当社交网络的用户列表用完或者达到期望数量的有影响力的人集合的影响者时,该过程终止。
    • 5. 发明授权
    • Text classification by weighted proximal support vector machine based on positive and negative sample sizes and weights
    • 基于正,负样本大小和权重的加权近端支持向量机进行文本分类
    • US07707129B2
    • 2010-04-27
    • US11384889
    • 2006-03-20
    • Dong ZhuangBenyu ZhangZheng ChenHua-Jun ZengJian Wang
    • Dong ZhuangBenyu ZhangZheng ChenHua-Jun ZengJian Wang
    • G06F15/18G06E1/00G06E3/00
    • G06F17/30707G06K9/6269
    • Embodiments of the invention relate to improvements to the support vector machine (SVM) classification model. When text data is significantly unbalanced (i.e., positive and negative labeled data are in disproportion), the classification quality of standard SVM deteriorates. Embodiments of the invention are directed to a weighted proximal SVM (WPSVM) model that achieves substantially the same accuracy as the traditional SVM model while requiring significantly less computational time. A weighted proximal SVM (WPSVM) model in accordance with embodiments of the invention may include a weight for each training error and a method for estimating the weights, which automatically solves the unbalanced data problem. And, instead of solving the optimization problem via the KKT (Karush-Kuhn-Tucker) conditions and the Sherman-Morrison-Woodbury formula, embodiments of the invention use an iterative algorithm to solve an unconstrained optimization problem, which makes WPSVM suitable for classifying relatively high dimensional data.
    • 本发明的实施例涉及对支持向量机(SVM)分类模型的改进。 当文本数据显着不平衡(即正负标签数据不成比例)时,标准SVM的分类质量恶化。 本发明的实施例涉及一种加权近端SVM(WPSVM)模型,其实现与传统SVM模型基本相同的精度,同时需要显着更少的计算时间。 根据本发明的实施例的加权近端SVM(WPSVM)模型可以包括每个训练误差的权重和用于估计权重的方法,其自动地解决不平衡数据问题。 而且,不是通过KKT(Karush-Kuhn-Tucker)条件和Sherman-Morrison-Woodbury公式来解决优化问题,而是本发明的实施例使用迭代算法来解决无约束优化问题,这使得WPSVM适合于相对分类 高维数据。
    • 6. 发明申请
    • Text classification by weighted proximal support vector machine
    • 通过加权近端支持向量机进行文本分类
    • US20070239638A1
    • 2007-10-11
    • US11384889
    • 2006-03-20
    • Dong ZhuangBenyu ZhangZheng ChenHua-Jun ZengJian Wang
    • Dong ZhuangBenyu ZhangZheng ChenHua-Jun ZengJian Wang
    • G06F15/18
    • G06F17/30707G06K9/6269
    • Embodiments of the invention relate to improvements to the support vector machine (SVM) classification model. When text data is significantly unbalanced (i.e., positive and negative labeled data are in disproportion), the classification quality of standard SVM deteriorates. Embodiments of the invention are directed to a weighted proximal SVM (WPSVM) model that achieves substantially the same accuracy as the traditional SVM model while requiring significantly less computational time. A weighted proximal SVM (WPSVM) model in accordance with embodiments of the invention may include a weight for each training error and a method for estimating the weights, which automatically solves the unbalanced data problem. And, instead of solving the optimization problem via the KKT (Karush-Kuhn-Tucker) conditions and the Sherman-Morrison-Woodbury formula, embodiments of the invention use an iterative algorithm to solve an unconstrained optimization problem, which makes WPSVM suitable for classifying relatively high dimensional data.
    • 本发明的实施例涉及对支持向量机(SVM)分类模型的改进。 当文本数据显着不平衡(即正负标签数据不成比例)时,标准SVM的分类质量恶化。 本发明的实施例涉及一种加权近端SVM(WPSVM)模型,其实现与传统SVM模型基本相同的精度,同时需要显着更少的计算时间。 根据本发明的实施例的加权近端SVM(WPSVM)模型可以包括每个训练误差的权重以及用于估计权重的方法,其自动地解决不平衡数据问题。 而且,不是通过KKT(Karush-Kuhn-Tucker)条件和Sherman-Morrison-Woodbury公式来解决优化问题,而是本发明的实施例使用迭代算法来解决无约束优化问题,这使得WPSVM适合于相对分类 高维数据。
    • 8. 发明授权
    • Document characterization using a tensor space model
    • 文档表征使用张量空间模型
    • US07529719B2
    • 2009-05-05
    • US11378095
    • 2006-03-17
    • Ning LiuBenyu ZhangJun YanZheng ChenHua-Jun ZengJian Wang
    • Ning LiuBenyu ZhangJun YanZheng ChenHua-Jun ZengJian Wang
    • G06N5/00
    • G06N5/02G06F17/30705
    • Computer-readable media having computer-executable instructions and apparatuses categorize documents or corpus of documents. A Tensor Space Model (TSM), which models the text by a higher-order tensor, represents a document or a corpus of documents. Supported by techniques of multilinear algebra, TSM provides a framework for analyzing the multifactor structures. TSM is further supported by operations and presented tools, such as the High-Order Singular Value Decomposition (HOSVD) for a reduction of the dimensions of the higher-order tensor. The dimensionally reduced tensor is compared with tensors that represent possible categories. Consequently, a category is selected for the document or corpus of documents. Experimental results on the dataset for 20 Newsgroups suggest that TSM is advantageous to a Vector Space Model (VSM) for text classification.
    • 具有计算机可执行指令和设备的计算机可读介质将文档或语料库分类。 张量空间模型(TSM),其通过高阶张量对文本进行建模,表示文档或文档语料库。 由多线代数技术支持,TSM为多因素结构分析提供了框架。 TSM还受到操作和提出的工具的支持,例如用于降低高阶张量尺寸的高阶奇异值分解(HOSVD)。 将尺寸减小的张量与表示可能类别的张量进行比较。 因此,文档或文档的语料库选择一个类别。 20个新闻组的数据集的实验结果表明,TSM对于文本分类的向量空间模型(VSM)是有利的。
    • 10. 发明授权
    • Identifying influential persons in a social network
    • 识别社会网络中有影响力的人物
    • US08359276B2
    • 2013-01-22
    • US11533742
    • 2006-09-20
    • Dong ZhuangBenyu ZhangHeng ZhangJeremy TantrumTeresa MahHua-Jun ZengZheng ChenJian Wang
    • Dong ZhuangBenyu ZhangHeng ZhangJeremy TantrumTeresa MahHua-Jun ZengZheng ChenJian Wang
    • G06Q99/00
    • G06Q30/02G06Q10/10
    • An influential persons identification system and method for identifying a set of influential persons (or influencers) in a social network (such as an online social network). The influential persons set is generated such that by sending a message to the set the message will be propagated through the network at the greatest speed and coverage. A ranking of users is generated, and a pruning process is performed starting with the top-ranked user and working down the list. For each user on the list, the user is identified as an influencer and then the user and each of his friends are deleted from the social network users list. Next, the same process is performed for the second-ranked user, the third-ranked user, and so forth. The process terminates when the list of users of the social network is exhausted or the desired number of influencers on the influential person set is reached.
    • 在社交网络(如在线社交网络)中识别一组有影响力的人(或影响者)的有影响力的人员识别系统和方法。 产生有影响力的人员,通过发送消息给消息集,消息将以最大的速度和覆盖率通过网络传播。 生成用户排名,并从顶级用户开始执行修剪过程,并在列表中执行操作。 对于列表中的每个用户,用户被识别为影响者,然后从社交网络用户列表中删除用户和他的每个朋友。 接下来,对于第二等级的用户,第三等级的用户等执行相同的处理。 当社交网络的用户列表用完或者达到期望数量的有影响力的人集合的影响者时,该过程终止。