会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • DRAM stacked capacitor fabrication process
    • DRAM堆叠电容器制造工艺
    • US5262343A
    • 1993-11-16
    • US852822
    • 1992-03-06
    • Howard E. RhodesPierre FazanHiang C. ChanCharles H. DennisonYauh-Ching Liu
    • Howard E. RhodesPierre FazanHiang C. ChanCharles H. DennisonYauh-Ching Liu
    • H01L21/02H01L21/8242H01L21/70
    • H01L27/10852H01L28/40
    • This invention relates to semiconductor circuit memory storage devices and more particularly to a process to develop three-dimensional stacked capacitor cells using a high dielectric constant material as a storage cell dielectric and a combination of conductively doped polysilicon and metal silicide as the capacitor plates of a storage cell for use in high-density dynamic random access memory (DRAM) arrays. The present invention teaches how to fabricate three-dimensional stacked capacitors by modifying an existing stacked capacitor fabrication process to construct the three-dimensional stacked capacitor cell incorporating a high dielectric constant material as the cell dielectric that will allow denser storage cell fabrication with minimal increases of overall memory array dimensions. A capacitance gain of 3 to 10.times. or more over that of a conventional 3-dimensional storage cell is gained by using a high dielectric constant material as the storage cell dielectric.
    • 本发明涉及半导体电路存储器存储器件,更具体地说,涉及使用高介电常数材料作为存储单元电介质和导电掺杂多晶硅和金属硅化物的组合来开发三维叠层电容器单元的方法,作为电容器板 用于高密度动态随机存取存储器(DRAM)阵列的存储单元。 本发明教导了如何通过修改现有的层叠电容器制造工艺来制造三维层叠电容器,以构建结合有高介电常数材料的三维叠层电容器单元作为电池电介质,其将使得更密集的存储单元制造以最小的增加 整体内存阵列尺寸。 通过使用高介电常数材料作为存储单元电介质,获得比常规3维存储单元的电容增益高3至10倍或更多的电容增益。
    • 2. 发明授权
    • Lateral extension stacked capacitor
    • 横向延伸堆叠电容器
    • US5236860A
    • 1993-08-17
    • US799461
    • 1991-11-26
    • Pierre FazanGurtej S. SandhuHiang C. ChanYauh-Ching Liu
    • Pierre FazanGurtej S. SandhuHiang C. ChanYauh-Ching Liu
    • H01L27/108
    • H01L27/10817
    • A lateral extension stacked capacitor (LESC) using a modified stacked capacitor storage cell fabrication process. The LESC is made up of polysilicon structure, having a spherical ended v-shaped cross-section. The storage node plate of the LESC is overlaid by polysilicon with a dielectric sandwiched in between and connects to an access device's active area via a buried contact. The plate extends to an adjacent storage node but is isolated from the adjacent node by less than the critical resolution dimension of a given lithographic technology. The addition of the polysilicon structure increases storage capability 50% without enlarging the surface area defined for a normal buried digit line stacked capacitor cell.
    • 一种侧向延伸堆叠电容器(LESC),采用改进的堆叠电容器存储单元制造工艺。 LESC由多晶硅结构组成,具有球形末端的V形横截面。 LESC的存储节点板由介质夹在其间的多晶硅覆盖,并通过埋入触点连接到接入设备的有源区。 板延伸到相邻的存储节点,但是通过小于给定光刻技术的临界分辨率尺寸与相邻节点隔离。 多晶硅结构的添加增加了存储能力50%,而不会扩大为正常埋地数字线叠层电容器电池定义的表面积。
    • 5. 发明授权
    • Enclosed ferroelectric stacked capacitor
    • 封闭铁电叠层电容器
    • US5081559A
    • 1992-01-14
    • US662671
    • 1991-02-28
    • Pierre FazanYauh-Ching LiuHiang C. Chan
    • Pierre FazanYauh-Ching LiuHiang C. Chan
    • H01L21/02H01L27/115H01L29/92
    • H01L27/11502H01L28/55
    • This invention relates to semiconductor circuit memory storage devices and more particularly to a process to develop three-dimensional stacked cell capacitors using a PZT ferroelectric material as a storage cell dielectric for use in high-density dynamic random access memory (DRAM) arrays. The present invention employs using PZT ferroelectric for the storage cell dielectric in three-dimensional stacked capacitor technology and develops an existing stacked capacitor fabrication process to construct a PZT three-dimensional stacked capacitor cell (the EFSC) that will allow denser storage cell fabrication with minimal increases of overall memory array dimensions. A capacitance gain of 3 to 10X or more over that of a conventional 3-dimensional storage cell is gained by using PZT ferroelectric as the storage cell dielectric.
    • 本发明涉及半导体电路存储器存储器件,更具体地说,涉及使用PZT铁电材料作为用于高密度动态随机存取存储器(DRAM)阵列的存储单元电介质的三维堆叠单元电容器的开发方法。 本发明使用PZT铁电作为三维堆叠电容器技术中的存储单元电介质,并且开发了现有的堆叠电容器制造工艺,以构建将使得更小的存储单元制造最小化的PZT三维堆叠电容器单元(EFSC) 整个内存阵列尺寸的增加。 通过使用PZT铁电作为存储单元电介质,获得比常规3维存储单元的电容增益高3至10倍或更大的电容增益。
    • 8. 发明授权
    • Method for formation of a stacked capacitor
    • 叠层电容器的形成方法
    • US5061650A
    • 1991-10-29
    • US643835
    • 1991-01-17
    • Charles H. DennisonHiang ChanYauh-Ching LiuPierre FazanHoward E. Rhodes
    • Charles H. DennisonHiang ChanYauh-Ching LiuPierre FazanHoward E. Rhodes
    • H01L27/04H01L21/02H01L21/822H01L21/8242H01L27/10H01L27/108
    • H01L28/91H01L27/10817
    • A method is disclosed for forming a capacitor on a semiconductor wafer. A first electrically conductive layer is applied atop the wafer and engages exposed active areas. A first dielectric layer is next applied. The first dielectric and conductive layers are then patterned to define an outline for the lower capacitor plate. A second dielectric layer, having an etch rate which is slower than the first, is then applied and planarized or otherwise etched down to the first dielectric layer. The first dielectric layer is then etched down to the first conductive layer to produce upwardly projecting walls of second dielectric material surrounding the lower capacitor plate outline. A second electrically conductive layer is then applied. It is then anisotropically etched to provide a first electrically conductive wall extending upwardly from the first conductive layer. A third dielectric layer is then applied. The third dielectric layer is then anisotropicallly etched to provide a first dielectric wall extending upwardly from the first conductive layer adjacent the first conductive wall. A third electrically conductive layer is next applied over the first conductive and dielectric walls. It is then anisotropically etched to provide a second electrically conductive wall extending upwardly from the first conductive layer adjacent the first dielectric wall. The first dielectric wall is then etched from the wafer. A capacitor dielectric layer is then applied, followed by a fourth electrically conductive layer to form an upper capacitor plate.
    • 公开了一种在半导体晶片上形成电容器的方法。 将第一导电层施加在晶片顶部并接合暴露的有源区。 接下来应用第一电介质层。 然后将第一介电层和导电层图案化以限定下电容器板的轮廓。 然后施加具有比第一介质层慢的蚀刻速率的第二介电层,并将其平坦化或以其它方式蚀刻到第一介电层。 然后将第一电介质层向下蚀刻到第一导电层,以产生围绕较低电容器板轮廓的第二介电材料的向上突出的壁。 然后施加第二导电层。 然后对其进行各向异性蚀刻以提供从第一导电层向上延伸的第一导电壁。 然后施加第三介电层。 然后对第三电介质层进行各向异性蚀刻以提供从邻近第一导电壁的第一导电层向上延伸的第一电介质壁。 接着将第三导电层施加在第一导电和电介质壁上。 然后对其进行各向异性蚀刻以提供从邻近第一介电壁的第一导电层向上延伸的第二导电壁。 然后从晶片蚀刻第一电介质壁。 然后施加电容器介电层,随后是第四导电层以形成上电容器板。