会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Methods of using selective optical excitation in deposition processes
and the detection of new compositions
    • 在沉积过程中使用选择性光学激发的方法和新组合物的检测
    • US4637938A
    • 1987-01-20
    • US524923
    • 1983-08-19
    • Henry LeeJohn P. deNeufvilleStanford R. Ovshinsky
    • Henry LeeJohn P. deNeufvilleStanford R. Ovshinsky
    • B01J12/00B01J19/12B01J19/14C01B33/107C01G17/04C23C16/24C23C16/48C23C16/52G01N21/64G03G5/08G03G5/082B05D3/06B05D5/12
    • C23C16/52B01J12/002B01J19/121C01B33/107C01G17/04C23C16/24C23C16/483C23C16/488G01N21/6402
    • The present invention generally relates to the use of fluorescence signals obtained by selective optical excitation to detect and monitor a species present during a flow reaction or decomposition of various reactants. These reactions were analyzed in situ using a tunable laser as a selective excitation source in combination with a reactor inducing such reactions with a diffusion flame or a plasma. The resultant spectra and analysis presented herein demonstrates the detection of new compositions like SiHF in the gas phase. The invention allows for pinpoint spatial probing of the reactor without perturbing the reaction. Thus, a deposition process can be controlled by monitoring a selected species and adjusting the deposition reaction parameters in response to the species' mere detection or relative concentration. The invention also contemplates perturbing deposition reactions by selectively exciting a species present in the deposition reaction to modify the deposited material so that the quality of the deposited material improves. Specifically, improved photovoltaic devices which include photoconductive material made in accordance with the present invention are disclosed herein.
    • 本发明一般涉及使用通过选择性光学激发获得的荧光信号来检测和监测在各种反应物的流动反应或分解过程中存在的物质。 使用可调激光器作为选择性激发源与与扩散火焰或等离子体引起这种反应的反应器组合的现场分析这些反应。 本文提出的所得光谱和分析证明了在气相中检测新的组成如SiHF。 本发明允许反应器的精确的空间探测,而不扰乱反应。 因此,可以通过监测所选择的物种并响应于物种的纯粹检测或相对浓度来调节沉积反应参数来控制沉积过程。 本发明还考虑通过选择性地激发沉积反应中存在的物质来改变沉积的材料来扰乱沉积反应,从而改善沉积材料的质量。 具体地,本文公开了包括根据本发明制造的光电导材料的改进的光伏器件。
    • 6. 发明授权
    • Optical ovonic threshold switch
    • 光学超声门限开关
    • US08111546B2
    • 2012-02-07
    • US12269901
    • 2008-11-13
    • Stanford R. Ovshinsky
    • Stanford R. Ovshinsky
    • G11C11/00
    • H01L45/085H01L45/1213H01L45/141Y10S977/754
    • A method and device for accomplishing transformation of a switching material from a resistive state to a conductive state. The method utilizes a non-electrical source of energy to effect the switching transformation. The switching material may be a chalcogenide switching material, where the non-electrical source of energy initiates switching by liberating lone pair electrons from bound states of chalcogen atoms. The liberated lone pair electrons form a conductive filament having the characteristics of a solid state plasma to permit high current densities to pass through the switching material. The device includes a switching material with electrical contacts and may be interconnected with other elements in a circuit to regulate electrical communication therebetween.
    • 一种用于实现将开关材料从电阻状态转换为导通状态的方法和装置。 该方法利用非电源能量来实现开关变换。 开关材料可以是硫族化物开关材料,其中非电源能量通过从孤硫原子的结合态释放孤对电子而开始切换。 释放的孤对电子形成具有固态等离子体特性的导电丝,以允许高电流密度通过开关材料。 该装置包括具有电触点的开关材料,并且可以与电路中的其它元件互连以调节它们之间的电连通。
    • 7. 发明授权
    • Method of manufacturing a photovoltaic device
    • 制造光伏器件的方法
    • US08062920B2
    • 2011-11-22
    • US12508835
    • 2009-07-24
    • Stanford R. Ovshinsky
    • Stanford R. Ovshinsky
    • H01L21/00
    • H01L31/022425Y02E10/50
    • A photovoltaic device including a current collection element and a method of making same. The photovoltaic device includes a substrate, a conductive layer, an active photovoltaic material, a transparent electrode and a current collection element. The current collection element includes a transparent support and one or more conductive wires integrated therewith. The conductive wires are in electrical communication with the transparent electrode. Current generated by the active photovoltaic material passes to the transparent electrode. The current collection element facilitates delivery of current passing through the transparent electrode to leads that deliver the current to an external load. The method includes placing a pre-fabricated current collection element in direct contact with the transparent electrode of the photovoltaic device. The time and expense of assembling the conductive wires during fabrication of the photovoltaic device is thereby avoided and higher manufacturing speeds are achieved.
    • 一种包括电流收集元件的光电器件及其制造方法。 光伏器件包括衬底,导电层,活性光伏材料,透明电极和集电元件。 电流收集元件包括透明支撑件和与其集成的一个或多个导电线。 导线与透明电极电连通。 由活性光伏材料产生的电流传递到透明电极。 电流采集元件有助于将通过透明电极的电流传送到将电流传递到外部负载的引线。 该方法包括将预制的电流收集元件放置成与光伏器件的透明电极直接接触。 从而避免了在制造光伏器件期间组装导线的时间和费用,并且实现了更高的制造速度。
    • 8. 发明授权
    • Plasma deposition of amorphous semiconductors at microwave frequencies
    • 微波等离子体沉积非晶半导体
    • US08048782B1
    • 2011-11-01
    • US12855631
    • 2010-08-12
    • Stanford R. OvshinskyDavid StrandPatrick KlersyBoil Pashmakov
    • Stanford R. OvshinskyDavid StrandPatrick KlersyBoil Pashmakov
    • H01L21/00
    • C23C16/452C23C16/24C23C16/511H01J37/32192H01J37/3244
    • Apparatus and method for plasma deposition of thin film photovoltaic materials at microwave frequencies. The apparatus avoids deposition on windows or other microwave transmission elements that couple microwave energy to deposition species. The apparatus includes a microwave applicator with conduits passing therethrough that carry deposition species. The applicator transfers microwave energy to the deposition species to transform them to a reactive state conducive to formation of a thin film material. The conduits physically isolate deposition species that would react to form a thin film material at the point of microwave power transfer. The deposition species are separately energized and swept away from the point of power transfer to prevent thin film deposition. The invention allows for the ultrafast formation of silicon-containing amorphous semiconductors that exhibit high mobility, low porosity, little or no Staebler-Wronski degradation, and low defect concentration.
    • 微波等离子体沉积薄膜光伏材料的设备和方法。 该装置避免了将微波能量耦合到沉积物质的窗户或其他微波传输元件上的沉积。 该装置包括带有通过其的导管的微波施加器,其携带沉积物质。 施加器将微波能量传递到沉积物质以将它们转变成有助于形成薄膜材料的反应状态。 导管物理隔离在微波功率传递点反应以形成薄膜材料的沉积物质。 沉积物质分开通电并从功率传递点扫除,以防止薄膜沉积。 本发明允许超快速地形成显示高迁移率,低孔隙率,很少或没有Staebler-Wronski降解和低缺陷浓度的含硅非晶半导体。
    • 9. 发明授权
    • Chemical vapor deposition of chalcogenide materials via alternating layers
    • 化学气相沉积硫族化物材料经交替层
    • US07858152B2
    • 2010-12-28
    • US12284425
    • 2008-09-22
    • Stanford R. OvshinskySmuruthi Kamepalli
    • Stanford R. OvshinskySmuruthi Kamepalli
    • C23C16/00
    • C23C16/305H01L45/04H01L45/06H01L45/144H01L45/1616
    • A chemical vapor deposition (CVD) process for preparing electrical and optical chalcogenide materials. In a preferred embodiment, the instant CVD-deposited materials exhibit one or more of the following properties: electrical switching, accumulation, setting, reversible multistate behavior, resetting, cognitive functionality, and reversible amorphous-crystalline transformations. In one embodiment, a multilayer structure, including at least one layer containing a chalcogen element, is deposited by CVD and subjected to post-deposition application of energy to produce a chalcogenide material having properties in accordance with the instant invention. In another embodiment, a single layer chalcogenide material having properties in accordance with the instant invention is formed from a CVD deposition process including three or more deposition precursors, at least one of which is a chalcogen element precursor. Preferred materials are those that include the chalcogen Te along with Ge and/or Sb.
    • 用于制备电和光硫族化物材料的化学气相沉积(CVD)工艺。 在优选的实施方案中,瞬时CVD沉积的材料表现出一种或多种以下性质:电开关,积聚,凝固,可逆多态行为,复位,认知功能和可逆非晶晶转换。 在一个实施方案中,包括含有硫属元素的至少一层的多层结构通过CVD沉积,并进行后沉积施加能量以产生具有根据本发明的性质的硫族化物材料。 在另一个实施方案中,具有根据本发明的性质的单层硫族化物材料由包括三种或更多种沉积前体的CVD沉积工艺形成,其中至少一种是硫属元素前体。 优选的材料是含有硫族元素Te和Ge和/或Sb的材料。