会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • FULLY AND UNIFORMLY SILICIDED GATE STRUCTURE AND METHOD FOR FORMING SAME
    • 完全和均匀的硅胶结构及其形成方法
    • US20080132070A1
    • 2008-06-05
    • US11566848
    • 2006-12-05
    • Wai-Kin LiHaining Yang
    • Wai-Kin LiHaining Yang
    • H01L21/44
    • H01L29/42316H01L21/28097H01L21/28518H01L29/4975H01L29/66545H01L29/6656H01L29/78Y10S977/892
    • Fully and uniformly silicided gate conductors are produced by deeply “perforating” silicide gate conductors with sub-lithographic, sub-critical dimension, nanometer-scale openings. A silicide-forming metal (e.g. cobalt, tungsten, etc.) is then deposited, polysilicon gates, covering them and filling the perforations. An anneal step converts the polysilicon to silicide. Because of the deep perforations, the surface area of polysilicon in contact with the silicide-forming metal is greatly increased over conventional silicidation techniques, causing the polysilicon gate to be fully converted to a uniform silicide composition. A self-assembling diblock copolymer is used to form a regular sub-lithographic nanometer-scale pattern that is used as an etching “template” for forming the perforations.
    • 通过用亚光刻,亚临界尺寸,纳米级开口深度“穿孔”硅化物栅极导体,产生完全均匀的硅化栅极导体。 然后沉积硅化物形成金属(例如钴,钨等),覆盖它们并填充穿孔的多晶硅栅极。 退火步骤将多晶硅转化为硅化物。 由于深的穿孔,与硅化物形成金属接触的多晶硅的表面积比常规硅化技术大大增加,导致多晶硅栅极被完全转变成均匀的硅化物组成。 使用自组装二嵌段共聚物来形成用作形成穿孔的蚀刻“模板”的规则的亚光刻纳米尺度图案。
    • 4. 发明授权
    • Fully and uniformly silicided gate structure and method for forming same
    • 完全均匀的硅化栅结构及其形成方法
    • US07863186B2
    • 2011-01-04
    • US12334746
    • 2008-12-15
    • Wai-Kin LiHaining Yang
    • Wai-Kin LiHaining Yang
    • H01L21/44
    • H01L29/42316H01L21/28097H01L21/28518H01L29/4975H01L29/66545H01L29/6656H01L29/78Y10S977/892
    • Fully and uniformly silicided gate conductors are produced by deeply “perforating” silicide gate conductors with sub-lithographic, sub-critical dimension, nanometer-scale openings. A silicide-forming metal (e.g. cobalt, tungsten, etc.) is then deposited, polysilicon gates, covering them and filling the perforations. An anneal step converts the polysilicon to silicide. Because of the deep perforations, the surface area of polysilicon in contact with the silicide-forming metal is greatly increased over conventional silicidation techniques, causing the polysilicon gate to be fully converted to a uniform silicide composition. A self-assembling diblock copolymer is used to form a regular sub-lithographic nanometer-scale pattern that is used as an etching “template” for forming the perforations.
    • 通过用亚光刻,亚临界尺寸,纳米级开口深度“穿孔”硅化物栅极导体,产生完全均匀的硅化栅极导体。 然后沉积硅化物形成金属(例如钴,钨等),覆盖它们并填充穿孔的多晶硅栅极。 退火步骤将多晶硅转化为硅化物。 由于深的穿孔,与硅化物形成金属接触的多晶硅的表面积比常规硅化技术大大增加,导致多晶硅栅极被完全转变成均匀的硅化物组成。 使用自组装二嵌段共聚物来形成用作形成穿孔的蚀刻“模板”的规则的亚光刻纳米尺度图案。
    • 5. 发明授权
    • Sub-lithographic local interconnects, and methods for forming same
    • 亚光刻局部互连及其形成方法
    • US07592247B2
    • 2009-09-22
    • US11538550
    • 2006-10-04
    • Haining YangJack A. MandelmanWai-Kin Li
    • Haining YangJack A. MandelmanWai-Kin Li
    • H01L21/4763
    • H01L21/76895B82Y10/00H01L21/0338H01L21/31144H01L21/76816H01L23/485H01L27/11H01L27/1104
    • The present invention relates to a semiconductor device having first and second active device regions that are located in a semiconductor substrate and are isolated from each other by an isolation region therebetween, while the semiconductor device contains a first sub-lithographic interconnect structure having a width ranging from about 20 nm to about 40 nm for connecting the first active device region with the second active device region. The semiconductor device preferably contains at least one static random access memory (SRAM) cell located in the semiconductor substrate, and the first sub-lithographic interconnect structure directly cross-connects a pull-down transistor of the SRAM cell with a pull-up transistor thereof without any metal contact therebetween. The first sub-lithographic interconnect structure can be readily formed by lithographic patterning of a mask layer, followed by formation of sub-lithographic features using either self-assembling block copolymers or dielectric sidewall spacers.
    • 本发明涉及一种具有第一和第二有源器件区域的半导体器件,该半导体器件区域位于半导体衬底中并且通过它们之间的隔离区彼此隔离,而半导体器件包含宽度范围的第一子光刻互连结构 从约20nm至约40nm,用于将第一有源器件区域与第二有源器件区域连接。 半导体器件优选地包含位于半导体衬底中的至少一个静态随机存取存储器(SRAM)单元,并且第一子光刻互连结构直接将SRAM单元的下拉晶体管与其上拉晶体管交叉连接 其间没有任何金属接触。 可以通过掩模层的光刻图案容易地形成第一亚光刻互连结构,然后使用自组装嵌段共聚物或电介质侧壁间隔物形成亚光刻特征。
    • 7. 发明申请
    • METHOD FOR FABRICATING SHALLOW TRENCH ISOLATION STRUCTURES USING DIBLOCK COPOLYMER PATTERNING
    • 使用二嵌段共聚物图案制作浅层分离结构的方法
    • US20080164558A1
    • 2008-07-10
    • US11621124
    • 2007-01-09
    • Haining YangWai-Kin Li
    • Haining YangWai-Kin Li
    • H01L23/00H01L21/762
    • H01L21/76283H01L21/3086
    • A method of isolating semiconductor devices formed on a semiconductor substrate having a silicon on insulator (SOI) layer is provided. The method includes forming at least one shallow trench area on a pad nitride layer deposited on a surface of the SOI layer, wherein the at least one shallow trench area includes an opening for exposing a portion of the SOI layer; applying diblock copolymer material over the pad nitride layer and the at least one shallow trench area; annealing the applied copolymer material to form self-organized patterns; and partially etching the shallow trench area using the diblock copolymer material as an etch mask. A semiconductor structures is also described having an isolation structure formed on a SOI layer of a semiconductor substrate the isolation structure having an oxidized substrate region; and a void region formed on the oxidized substrate region.
    • 提供了一种隔离形成在具有绝缘体上硅(SOI)层的半导体衬底上的半导体器件的方法。 该方法包括在沉积在SOI层的表面上的衬垫氮化物层上形成至少一个浅沟槽区,其中至少一个浅沟槽区包括用于暴露SOI层的一部分的开口; 在所述衬垫氮化物层和所述至少一个浅沟槽区域上施加二嵌段共聚物材料; 退火所应用的共聚物材料以形成自组织图案; 并使用二嵌段共聚物材料作为蚀刻掩模部分蚀刻浅沟槽区域。 还描述了半导体结构,其具有形成在半导体衬底的SOI层上的隔离结构,该隔离结构具有氧化的衬底区域; 以及形成在氧化的基板区域上的空隙区域。
    • 8. 发明申请
    • SUB-LITHOGRAPHIC LOCAL INTERCONNECTS, AND METHODS FOR FORMING SAME
    • 次平面局部互连及其形成方法
    • US20080083991A1
    • 2008-04-10
    • US11538550
    • 2006-10-04
    • Haining YangJack A. MandelmanWai-Kin Li
    • Haining YangJack A. MandelmanWai-Kin Li
    • H01L23/52
    • H01L21/76895B82Y10/00H01L21/0338H01L21/31144H01L21/76816H01L23/485H01L27/11H01L27/1104
    • The present invention relates to a semiconductor device having first and second active device regions that are located in a semiconductor substrate and are isolated from each other by an isolation region therebetween, while the semiconductor device contains a first sub-lithographic interconnect structure having a width ranging from about 20 nm to about 40 nm for connecting the first active device region with the second active device region. The semiconductor device preferably contains at least one static random access memory (SRAM) cell located in the semiconductor substrate, and the first sub-lithographic interconnect structure directly cross-connects a pull-down transistor of the SRAM cell with a pull-up transistor thereof without any metal contact therebetween. The first sub-lithographic interconnect structure can be readily formed by lithographic patterning of a mask layer, followed by formation of sub-lithographic features using either self-assembling block copolymers or dielectric sidewall spacers.
    • 本发明涉及一种具有第一和第二有源器件区域的半导体器件,该半导体器件区域位于半导体衬底中并且通过它们之间的隔离区彼此隔离,而半导体器件包含宽度范围的第一子光刻互连结构 从约20nm至约40nm,用于将第一有源器件区域与第二有源器件区域连接。 半导体器件优选地包含位于半导体衬底中的至少一个静态随机存取存储器(SRAM)单元,并且第一子光刻互连结构直接将SRAM单元的下拉晶体管与其上拉晶体管交叉连接 其间没有任何金属接触。 可以通过掩模层的光刻图案容易地形成第一亚光刻互连结构,然后使用自组装嵌段共聚物或电介质侧壁间隔物形成亚光刻特征。
    • 9. 发明授权
    • Gate conductor with a diffusion barrier
    • 具有扩散阻挡层的栅极导体
    • US08476674B2
    • 2013-07-02
    • US13010009
    • 2011-01-20
    • Wai-Kin LiHaining Yang
    • Wai-Kin LiHaining Yang
    • H01L29/66H01L27/118
    • H01L21/76841H01L21/823842H01L21/823871H01L22/12H01L23/58H01L29/42376H01L29/4238H01L29/78H01L2924/0002H01L2924/00
    • A gate conductor structure is provided having a barrier region between a N-type device and a P-type device, wherein the barrier region minimizes or eliminates cross-diffusion of dopant species across the barrier region. The barrier region comprises at least one sublithographic gap in the gate conductor structure. The sublithographic gap is formed by using self-assembling copolymers to form a sublithographic patterned mask over the gate conductor structure. According to one embodiment, at least one sublithographic gap is a slit or line that traverses the width of the gate conductor structure. The sublithographic gap is sufficiently deep to minimize or prevent cross-diffusion of the implanted dopant from the upper portion of the gate conductor. According to another embodiment, the sublithographic gaps are of sufficient density that cross-diffusion of dopants is reduced or eliminated during an activation anneal such that changes in Vt are minimized.
    • 提供了具有在N型器件和P型器件之间的势垒区域的栅极导体结构,其中所述势垒区域最小化或消除了所述阻挡区域上的掺杂剂物质的交叉扩散。 阻挡区域包括栅极导体结构中的至少一个亚光刻间隙。 通过使用自组装共聚物在栅极导体结构上形成亚光刻图案掩模来形成亚光刻间隙。 根据一个实施例,至少一个亚光刻间隙是穿过栅极导体结构的宽度的狭缝或线。 亚光刻间隙足够深以使注入的掺杂剂从栅极导体的上部最小化或防止交叉扩散。 根据另一个实施例,亚光刻间隙具有足够的密度,使得在激活退火期间掺杂剂的交叉扩散减少或消除,使得Vt的变化最小化。