会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明授权
    • Seismic event classification system
    • 地震事件分类系统
    • US5373486A
    • 1994-12-13
    • US13268
    • 1993-02-03
    • Farid U. DowlaStephen P. JarpeWilliam Maurer
    • Farid U. DowlaStephen P. JarpeWilliam Maurer
    • G01V1/00G06F17/00H04B1/06
    • G01V1/003
    • In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities.
    • 在计算机解析地震资料时,关键的第一步是确定一个未知事件的一般类。 例如,分类可能是:远地震,区域,地方,车辆或噪音。 自组织神经网络(SONN)可用于对这些事件进行分类。 Kohonen和自适应共振理论(ART)SONNs都是有用的。 给定地震事件的检测和相应的信号,计算时间频率分布,二进制表示,最后是移位不变表示,它是二维傅立叶变换(2-D FFT)二进制时频分布。 该预处理的输入被馈送到SONN中。 这些神经网络能够组合看起来相似的事件。 ART SONN在分类事件方面具有优势,因为不需要预先定义集群组的类型。 然后将SONN的结果与专家地震学家的分类结果一起用于导出事件分类概率。