会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Thermoplastic polymer microfibers, nanofibers and composites
    • 热塑性聚合物微纤维,纳米纤维和复合材料
    • US08105682B2
    • 2012-01-31
    • US12310612
    • 2007-08-31
    • Gang SunDong Wang
    • Gang SunDong Wang
    • D04H1/00
    • D01F6/92D01F2/28D01F6/46D01F8/02D01F8/14D01F8/18Y10T428/249924Y10T428/298
    • The present invention provides methods of making micron, submicron or nanometer dimension thermoplastic polymer microfibrillar composites and fibers, and methods of using the thermoplastic polymer microfibers and nanofibers in woven fabrics, biocidal textiles, biosensors, membranes, filters, protein support and organ repairs. The methods typically include admixing a thermoplastic polymer and a matrix material to form a mixture, where the thermoplastic and the matrix are thermodynamically immiscible, followed by extruding the mixture under conditions sufficient to form a microfibrillar composite containing a plurality of the thermoplastic polymer microfibers and/or nanofibers embedded in the matrix material. The microfibers and/or nanofibers are isolated by removing the surrounding matrix. In one embodiment, the microfibrillar composite formed is further extended under conditions sufficient to form a drawn microfibrillar and/or nanofibrillar composite with controlled diameters.
    • 本发明提供制造微米级,亚微米级或纳米级热塑性聚合物微原纤维复合材料和纤维的方法,以及在机织织物,杀生物杀菌纺织品,生物传感器,膜,过滤器,蛋白质载体和器官修复中使用热塑性聚合物微纤维和纳米纤维的方法。 所述方法通常包括混合热塑性聚合物和基质材料以形成混合物,其中热塑性和基质是热力学上不混溶的,随后在足以形成含有多种热塑性聚合物微纤维和/ 或嵌入基质材料中的纳米纤维。 通过除去周围的基质来分离微纤维和/或纳米纤维。 在一个实施方案中,形成的微原纤维复合材料在足以形成具有受控直径的拉伸微原纤维和/或纳米纤维复合材料的条件下进一步延伸。
    • 2. 发明申请
    • THERMOPLASTIC POLYMER MICROFIBERS, NANOFIBERS AND COMPOSITES
    • 热塑性聚合物微胶囊,纳米纤维和复合材料
    • US20100233458A1
    • 2010-09-16
    • US12310612
    • 2007-08-31
    • Gang SunDong Wang
    • Gang SunDong Wang
    • B32B5/02D01D5/00B29C47/06D02G3/00
    • D01F6/92D01F2/28D01F6/46D01F8/02D01F8/14D01F8/18Y10T428/249924Y10T428/298
    • The present invention provides methods of making micron, submicron or nanometer dimension thermoplastic polymer microfibrillar composites and fibers, and methods of using the thermoplastic polymer microfibers and nanofibers in woven fabrics, biocidal textiles, biosensors, membranes, filters, protein support and organ repairs. The methods typically include admixing a thermoplastic polymer and a matrix material to form a mixture, where the thermoplastic and the matrix are thermodynamically immiscible, followed by extruding the mixture under conditions sufficient to form a microfibrillar composite containing a plurality of the thermoplastic polymer microfibers and/or nanofibers embedded in the matrix material. The microfibers and/or nanofibers are isolated by removing the surrounding matrix. In one embodiment, the microfibrillar composite formed is further extended under conditions sufficient to form a drawn microfibrillar and/or nanofibrillar composite with controlled diameters.
    • 本发明提供制造微米级,亚微米级或纳米级热塑性聚合物微原纤维复合材料和纤维的方法,以及在机织织物,杀生物杀菌纺织品,生物传感器,膜,过滤器,蛋白质载体和器官修复中使用热塑性聚合物微纤维和纳米纤维的方法。 所述方法通常包括混合热塑性聚合物和基质材料以形成混合物,其中热塑性和基质是热力学上不混溶的,随后在足以形成含有多种热塑性聚合物微纤维和/ 或嵌入基质材料中的纳米纤维。 通过除去周围的基质来分离微纤维和/或纳米纤维。 在一个实施方案中,形成的微原纤维复合材料在足以形成具有受控直径的拉伸微原纤维和/或纳米纤维复合材料的条件下进一步延伸。
    • 5. 发明授权
    • Electrically controlled medium for modulating light
    • 用于调制光的电磁介质
    • US08357312B2
    • 2013-01-22
    • US12988620
    • 2008-05-16
    • Gang Sun
    • Gang Sun
    • C09K19/00C09K19/06C09K19/32C09K19/52G03C1/1333
    • C09K19/542C09K19/52C09K19/58G02F1/1334G02F1/134336G02F1/13781G02F2203/30Y10T428/10Y10T428/1036
    • An electrically controlled medium for modulating light includes two plastic thin film layers (1) and (2), and a mixture layer (3) is arranged between the two plastic thin film layers (1) and (2). The mixture layer (3) is consisted of smectic liquid crystals (31), polymer materials (33) and dopants (32). Electrode layers (4) are coated on one side of each of the two plastic thin film layers (1) and (2) facing to the mixture layer (3), and the electrode layers (4) are connected to a device of electrical driving system (5). The liquid crystal molecules are allowed to exhibit different molecule alignments by controlling the amplitude, frequency and driving time of the electric power applied to the electrode layers (4), so that the electrically controlled medium for modulating light can be switched between a blurredly scattering state and a fully transparent state, even may be switched among a plurality of gradual translucent states of different gray levels. The medium is power saving, hard to be broken and eco friendly and it can maintain its state after power is off (memory effect). It has fast switching speed and can be broadly used for the fields of architectural decoration, privacy control areas, automotive electronics and glass, etc.
    • 用于调制光的电控介质包括两个塑料薄膜层(1)和(2),并且在两个塑料薄膜层(1)和(2)之间布置有混合层(3)。 混合层(3)由近晶液晶(31),聚合物材料(33)和掺杂剂(32)组成。 电极层(4)涂覆在两个塑料薄膜层(1)和(2)的面对混合层(3)的一侧上,并且电极层(4)连接到电驱动装置 系统(5)。 通过控制施加到电极层(4)的电力的振幅,频率和驱动时间,允许液晶分子显示不同的分子对准,使得用于调制光的电控介质可以在模糊散射状态 并且完全透明状态,甚至可以在不同灰度级的多个渐变半透明状态之间切换。 介质节电,难破,环保,电源关闭后可保持状态(记忆效应)。 开关速度快,可广泛应用于建筑装饰,隐私控制领域,汽车电子和玻璃等领域。
    • 6. 发明申请
    • POLARIZATION IMAGING
    • 极化成像
    • US20120070065A1
    • 2012-03-22
    • US13202251
    • 2010-02-17
    • Scott A. BalakGang Sun
    • Scott A. BalakGang Sun
    • G06K9/00G01J4/00
    • G01N21/88G01N21/21
    • Methods of monitoring critical dimensions in a semiconductor fabrication process include capturing at least one image of a first structure that has an effect on the polarization state of light reflected therefrom. For at least some of the first structure images, a value is calculated indicative of intensity of light reflected from the first structure. A critical dimension of the first structure is obtained and correlated with the calculated value. At least one image of a subsequent structure is captured. A determination is made, based at least in part on the calculated value, of a critical dimension of the subsequent structure.
    • 在半导体制造工艺中监测关键尺寸的方法包括捕获对从其反射的光的偏振状态具有影响的第一结构的至少一个图像。 对于至少一些第一结构图像,计算指示从第一结构反射的光的强度的值。 获得第一结构的临界尺寸并与计算值相关。 捕获后续结构的至少一个图像。 至少部分地基于计算值确定后续结构的关键维度。