会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • STIFFNESS-FREQUENCY ADJUSTABLE XY MICROMOTION STAGE BASED ON STRESS STIFFENING
    • 基于应力强化的柔性 - 频率可调XY显微镜
    • US20170001275A1
    • 2017-01-05
    • US15114090
    • 2014-09-24
    • GUANGDONG UNIVERSITY OF TECHNOLOGY
    • Zhijun YangYoudun BaiXin ChenJian GaoHaidong YangMeng WangHui Tang
    • B23Q1/34B23Q5/28B23Q1/62
    • B23Q1/34B23Q1/62B23Q5/28B23Q2210/002B23Q2230/004
    • The present disclosure involves occasions where precise two-dimensional motion takes place, and is applicable to XY motion stages for precise displacement compensation. The present disclosure particularly involves a stiffness-frequency adjustable XY micromotion stage based on stress stiffening, which includes X-direction and Y-direction motion sub-stages and corresponding drivers and a micromotion working table. The micromotion stage uses membrane sets that have tension levels thereof adjusted by bolts as a flexible hinge, so as to achieve independent adjustment of the vibration frequency of the XY micromotion stage. The present disclosure implements the foregoing configuration based on prestressed membrane, so the frequency is adjustable. The inherent frequency of the micromotion stage can be adjusted before or during operation according to various working conditions and driving frequency. The two feed motion direction are perpendicular so as to prevent the micromotion working table from coupling during two-dimensional motion.
    • 本公开涉及发生精确二维运动的场合,并且适用于用于精确位移补偿的XY运动台。 本公开特别涉及基于应力硬化的刚度 - 频率可调XY微动平台,其包括X方向和Y方向运动子级以及相应的驱动器和微动作工作台。 微动阶段使用具有通过螺栓调节的张力水平的膜组作为柔性铰链,以便实现XY微动阶段的振动频率的独立调整。 本公开实现了基于预应力膜的上述构造,因此频率是可调节的。 可以根据各种工作条件和驱动频率在操作前或操作期间调整微动阶段的固有频率。 两个进给运动方向是垂直的,以防止微动工作台在二维运动期间耦合。
    • 4. 发明申请
    • MACRO-MICRO COMPOSITE GRATING RULER MEASURING SYSTEM BASED ON CONVERSION AND AMPLIFICATION IN VERTICAL AND HORIZONTAL DIRECTIONS
    • 基于垂直和水平方向的转换和放大的宏微复合光栅测量系统
    • US20170003147A1
    • 2017-01-05
    • US15114087
    • 2014-09-24
    • GUANGDONG UNIVERSITY OF TECHNOLOGY
    • Zhijun YangYoudun BaiXin ChenJian GaoHaidong YangMeng Wang
    • G01D5/347
    • G01D5/34707G01D5/34746
    • The present disclosure relates to a macro-micro composite grating ruler measuring system based on conversion and amplification in vertical and horizontal directions. The macro-micro composite grating ruler includes a grating ruler, a macro-micro reading system moving with respect to the grating ruler, and a counting and image processing module. The macro-micro reading system faces grating strip datum and is parallel to the grating ruler. The system further includes a measuring reference line. The measuring reference line obtained by the image sensor together with grating strips forms an image overlap in the counting and image processing module. The measuring reference line and the grating strip jointly include an angle θ. With the foregoing configuration, the present invention is compatible with the existing incremental grating rulers and absolute grating rulers, so is highly applicable.
    • 本公开涉及基于垂直和水平方向上的转换和放大的宏观微复合光栅尺测量系统。 宏观微复合光栅尺包括光栅尺,相对于光栅尺移动的宏观微读取系统,以及计数和图像处理模块。 宏观微观读取系统面对光栅条纹基准面并与光栅尺平行。 该系统还包括测量参考线。 由图像传感器与光栅条纹获得的测量参考线在计数和图像处理模块中形成图像重叠。 测量基准线和光栅条共同包括角度θ。 利用上述结构,本发明与现有的增量光栅尺和绝对光栅尺匹配,因此是非常适用的。
    • 8. 发明申请
    • METHOD OF PLANNING ASYMMETRIC VARIABLE ACCELERATION BASED ON NON-LINEAR FINITE ELEMENT DYNAMIC RESPONSE SIMULATION
    • 基于非线性有限元动态响应模拟的不对称可变加速度规划方法
    • US20160350462A1
    • 2016-12-01
    • US15113844
    • 2014-09-24
    • GUANGDONG UNIVERSITY OF TECHNOLOGY
    • Xin ChenYoudun BaiZhijun YangJian GaoHaidong YangMeng Wang
    • G06F17/50G06T17/10
    • G06F17/5018G06F17/50G06F17/5086G06T17/10
    • Various embodiments relate to a method of planning asymmetric variable acceleration based on non-linear finite element dynamic response simulation. The planning method involves obtaining solution of a non-linear finite element model positioning process that has kinematic freedom and adopts a parameterized motion function as its boundary condition; determining whether post-driving amplitude of an execution end satisfies positioning precision, and if it does not, continuing getting solution, and if it is, adjusting an energy decay time; determining whether a target response time is minimum, and if it is, verifying the set motion parameter as optimal, and if it is not, calculating a gradient and a step size of the motion parameter, and resetting the motion parameter for solution. The present disclosure utilizes this method to plan high-speed high-acceleration motion for mechanisms that are affected by non-linear factors such as large flexible deformation and require precise positioning.
    • 各种实施例涉及基于非线性有限元动态响应模拟来规划不对称可变加速度的方法。 规划方法包括获得具有运动自由度并采用参数化运动函数作为其边界条件的非线性有限元模型定位过程的解; 确定执行端的后驱动幅度是否满足定位精度,如果不是,则继续获得解,并且如果是,则调整能量衰减时间; 确定目标响应时间是否最小,并且如果是,则将所设置的运动参数验证为最佳,如果不是,则计算运动参数的梯度和步长,并且重新设置运动参数以进行解。 本发明利用这种方法为受非线性因素如大的挠性变形影响并需要精确定位的机构规划高速高速运动。