会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Composite iridium-metal-oxygen barrier structure with refractory metal companion barrier and method for same
    • 复合铱金属 - 氧阻隔结构与难熔金属伴侣屏障及其方法相同
    • US06190963B1
    • 2001-02-20
    • US09316661
    • 1999-05-21
    • Fengyan ZhangSheng Teng HsuJer-shen MaaWei-Wei Zhuang
    • Fengyan ZhangSheng Teng HsuJer-shen MaaWei-Wei Zhuang
    • H01L218242
    • H01L28/75H01L21/28568H01L28/55
    • An Ir—M—O composite film has been provided that is useful in forming an electrode of a ferroelectric capacitor, where M includes a variety of refractory metals. The Ir combination film is resistant to high temperature annealing in oxygen environments. When used with an underlying barrier layer made from the same variety of M transition metals, the resulting conductive barrier also suppresses to diffusion of Ir into any underlying Si substrates. As a result, Ir silicide products are not formed, which degrade the electrode interface characteristics. That is, the Ir combination film remains conductive, not peeling or forming hillocks, during high temperature annealing processes, even in oxygen. The Ir—M—O conductive electrode/barrier structures are useful in nonvolatile FeRAM devices, DRAMs, capacitors, pyroelectric infrared sensors, optical displays, optical switches, piezoelectric transducers, and surface acoustic wave devices. A method for forming an Ir—M—O composite film barrier layer and an Ir—M—O composite film ferroelectric electrode are also provided.
    • 已经提供了可用于形成铁电电容器的电极的Ir-M-O复合膜,其中M包括各种难熔金属。 Ir组合膜在氧气环境中耐高温退火。 当与由相同种类的M过渡金属制成的底层阻挡层一起使用时,所得到的导电屏障还抑制Ir扩散到任何下面的Si衬底中。 结果,不形成铱硅化物产物,这降低了电极界面的特性。 也就是说,即使在氧气中,Ir组合膜在高温退火过程中仍保持导电性,不会剥离或形成小丘。 Ir-M-O导电电极/屏障结构可用于非易失性FeRAM器件,DRAM,电容器,热释电红外传感器,光学显示器,光开关,压电换能器和表面声波器件。 还提供了形成Ir-M-O复合膜阻挡层和Ir-M-O复合膜铁电电极的方法。
    • 6. 发明授权
    • PGO solutions for the preparation of PGO thin films via spin coating
    • 用于通过旋涂制备PGO薄膜的PGO溶液
    • US06372034B1
    • 2002-04-16
    • US09687827
    • 2000-10-12
    • Wei-Wei ZhuangJer-shen MaaFengyan ZhangSheng Teng Hsu
    • Wei-Wei ZhuangJer-shen MaaFengyan ZhangSheng Teng Hsu
    • H01L2122
    • H01L21/31691
    • A method of preparing a PGO solution for spin coating includes preparing a 2-methoxyethanol organic solvent; adding Pb(OCH3CO)2.3H2O to the organic solvent at ambient temperature and pressure in a nitrogen-filled glaved box to form Pb in methoxyethanol; refluxing the solution in a nitrogen atmosphere at 150° C. for at least two hours; fractionally distilling the refluxed solution at approximately 150° C. to remove all of the water from the solution; cooling the solution to room temperature; determining the Pb concentration of the solution; adding the 2-methoxyethanol solution to the Pb 2-methoxyethanol until a desired Pb concentration is achieved; combining Ge(OR)4, where R is taken the group of Rs consisting of CH2CH3 and CH(CH3)2, and 2-methoxyethanol; and adding Ge(OR)4 2-methoxyethanol to PbO 2-methoxyethanol to form the PGO solution having a predetermined metal ion concentration and a predetermined Pb:Ge molar ration.
    • 制备用于旋涂的PGO溶液的方法包括制备2-甲氧基乙醇有机溶剂; 在环境温度和压力下,在氮气充填的玻璃箱中加入Pb(OCH 3 CO)2.3H 2 O至有机溶剂中以在甲氧基乙醇中形成Pb; 将溶液在氮气气氛中在150℃下回流至少2小时; 在大约150℃下将回流的溶液分馏,以从溶液中除去所有的水; 将溶液冷却至室温; 测定溶液的Pb浓度; 将2-甲氧基乙醇溶液加入到Pb 2-甲氧基乙醇中直到达到所需的Pb浓度; 组合Ge(OR)4,其中R是由CH 2 CH 3和CH(CH 3)2组成的基团和2-甲氧基乙醇; 并向PbO 2 - 甲氧基乙醇中加入Ge(OR)4 2-甲氧基乙醇以形成具有预定的金属离子浓度和预定的Pb:Ge摩尔比的PGO溶液。
    • 7. 发明授权
    • Method of monitoring PGO spin-coating precursor solution synthesis using UV spectroscopy
    • 使用紫外光谱法监测PGO旋涂前体溶液合成的方法
    • US06585821B1
    • 2003-07-01
    • US10345636
    • 2003-01-15
    • Wei-Wei ZhuangFengyan ZhangJer-shen MaaSheng Teng Hsu
    • Wei-Wei ZhuangFengyan ZhangJer-shen MaaSheng Teng Hsu
    • C23C1616
    • H01L21/02197C01G21/00C01P2002/86H01L21/02112H01L21/02175H01L21/02282H01L21/31604H01L21/31691
    • A method of monitoring the synthesis of a PGO spin-coating precursor solution includes monitoring heating of the solution with a UV spectrometer and terminating the heating step when a solution property reaches a predetermined value. The method utilizes the starting materials of lead acetate trihydrate (Pb(OAc)2.3H2O) and germanium alkoxide (Ge(OR)4 (R=C2H5 and CH(CH3)2)). The organic solvent is di(ethylene glycol)ethyl ether. The mixed solution of lead and di(ethylene glycol)ethyl ether is heated in an atmosphere of air at a temperature no greater than 190° C., and preferably no greater than 185° C. for a time period in a range of approximately eighty-five minutes. During the heating step the solution properties are monitored to determine when the reaction is complete and when decomposition of the desired product begins to take place. The solution is then added to germanium di(ethylene glycol)ethyl ether to make the PGO spin-coating solution. This second step also entails heating the solution to a temperature no greater than 190° C. for a time period in a range of 0.5 to 2.0 hours. This heating step is also monitored with a UV spectrometer to determine when the heating step should be terminated. The process results in a PGO precursor solution suitable for use in spin-coating.
    • 监测PGO旋涂前体溶液合成的方法包括用UV光谱仪监测溶液的加热,并且当溶液性能达到预定值时终止加热步骤。 该方法采用醋酸铅三水合物(Pb(OAc)2.3H2O)和烷氧基锗(Ge(OR)4(R = C2H5和CH(CH3)2))的原料。 有机溶剂是二(乙二醇)乙醚。 将铅和二(乙二醇)乙醚的混合溶液在不大于190℃,优选不大于185℃的空气气氛中加热约80℃的时间 -5分钟。 在加热步骤期间,监测溶液性质以确定反应何时完成,并且当所需产物的分解开始发生时。 然后将该溶液加入到二(乙二醇)二乙醚中以制备PGO旋涂溶液。 该第二步骤还需要将溶液加热至不高于190℃的温度,持续0.5至2.0小时的时间。 该加热步骤也用UV光谱仪监测,以确定加热步骤何时终止。 该方法产生适合用于旋涂的PGO前体溶液。
    • 8. 发明授权
    • Composite iridium-metal-oxygen barrier structure with refractory metal companion barrier
    • 复合铱金属氧阻隔结构与难熔金属伴侣屏障
    • US06288420B1
    • 2001-09-11
    • US09703192
    • 2000-10-31
    • Fengyan ZhangSheng Teng HsuJer-shen MaaWei-Wei Zhuang
    • Fengyan ZhangSheng Teng HsuJer-shen MaaWei-Wei Zhuang
    • H01L2976
    • H01L28/75H01L21/28568H01L28/55
    • An Ir—M—O composite film has been provided that is useful in forming an electrode of a ferroelectric capacitor, where M includes a variety of refractory metals. The Ir combination film is resistant to high temperature annealing in oxygen environments. When used with an underlying barrier layer made from the same variety of M transition metals, the resulting conductive barrier also suppresses to diffusion of Ir into any underlying Si substrates. As a result, Ir silicide products are not formed, which degrade the electrode interface characteristics. That is, the Ir combination film remains conductive, not peeling or forming hillocks, during high temperature annealing processes, even in oxygen. The Ir—M—O conductive electrode/barrier structures are useful in nonvolatile FeRAM devices, DRAMs, capacitors, pyroelectric infrared sensors, optical displays, optical switches, piezoelectric transducers, and surface acoustic wave devices. A method for forming an Ir—M—O composite film barrier layer and an Ir—M—O composite film ferroelectric electrode are also provided.
    • 已经提供了可用于形成铁电电容器的电极的Ir-M-O复合膜,其中M包括各种难熔金属。 Ir组合膜在氧气环境中耐高温退火。 当与由相同种类的M过渡金属制成的底层阻挡层一起使用时,所得到的导电屏障还抑制Ir扩散到任何下面的Si衬底中。 结果,不形成铱硅化物产物,这降低了电极界面的特性。 也就是说,即使在氧气中,Ir组合膜在高温退火过程中仍保持导电性,不会剥离或形成小丘。 Ir-M-O导电电极/屏障结构可用于非易失性FeRAM器件,DRAM,电容器,热释电红外传感器,光学显示器,光开关,压电换能器和表面声波器件。 还提供了形成Ir-M-O复合膜阻挡层和Ir-M-O复合膜铁电电极的方法。
    • 9. 发明授权
    • Method of fabricating a nickel silicide on a substrate
    • 在衬底上制造硅化镍的方法
    • US06720258B2
    • 2004-04-13
    • US10319313
    • 2002-12-12
    • Jer-shen MaaDouglas J. TweetYoshi OnoFengyan ZhangSheng Teng Hsu
    • Jer-shen MaaDouglas J. TweetYoshi OnoFengyan ZhangSheng Teng Hsu
    • H01L2144
    • H01L21/28518H01L29/456
    • An integrated circuit device, and a method of manufacturing the same, comprises an epitaxial nickel silicide on (100) Si, or a stable nickel silicide on amorphous Si, fabricated with a cobalt interlayer. In one embodiment the method comprises depositing a cobalt (Co) interface layer between the Ni and Si layers prior to the silicidation reaction. The cobalt interlayer regulates the flux of the Ni atoms through the cobalt/nickel/silicon alloy layer formed from the reaction of the cobalt interlayer with the nickel and the silicon so that the Ni atoms reach the Si interface at a similar rate, i.e., without any orientation preference, so as to form a uniform layer of nickel silicide. The nickel silicide may be annealed to form a uniform crystalline nickel disilicide. Accordingly, a single crystal nickel silicide on (100) Si or on amorphous Si is achieved wherein the nickel silicide has improved stability and may be utilized in ultra-shallow junction devices.
    • 集成电路器件及其制造方法包括在(100)Si上的外延硅化镍,或者由钴中间层制造的在非晶Si上的稳定的硅化镍。 在一个实施方案中,该方法包括在硅化反应之前在Ni和Si层之间沉积钴(Co)界面层。 钴中间层通过由钴中间层与镍和硅的反应形成的钴/镍/硅合金层调节Ni原子的通量,使得Ni原子以相似的速率到达Si界面,即没有 任何取向偏好,从而形成均匀的硅化镍层。 可以将镍硅化物退火以形成均匀的结晶二硅化镍。 因此,实现了(100)Si或非晶Si上的单晶硅化镍,其中硅化镍具有改进的稳定性并可用于超浅结结器件中。
    • 10. 发明授权
    • Iridium conductive electrode/barrier structure and method for same
    • 铱导电电极/屏障结构及方法相同
    • US06682995B2
    • 2004-01-27
    • US10317742
    • 2002-12-11
    • Fengyan ZhangJer-shen MaaSheng Teng Hsu
    • Fengyan ZhangJer-shen MaaSheng Teng Hsu
    • H01L213205
    • H01L29/456H01L21/28291H01L28/55H01L28/65
    • A conductive barrier, useful as a ferroelectric capacitor electrode, having high temperature stability has been provided. This conductive barrier permits the use of iridium (Ir) metal in IC processes involving annealing. Separating silicon substrate from Ir film with an intervening, adjacent, tantalum (Ta) film has been found to very effective in suppressing diffusion between layers. The Ir prevents the interdiffusion of oxygen into the silicon during annealing. A Ta or TaN layer prevents the diffusion of Ir into the silicon. This Ir/TaN structure protects the silicon interface so that adhesion, conductance, hillock, and peeling problems are minimized. The use of Ti overlying the Ir/TaN structure also helps prevent hillock formation during annealing. A method of forming a multilayer Ir conductive structure and Ir ferroelectric electrode are also provided.
    • 已经提供了具有高温稳定性的导电阻挡层,其可用作铁电电容器电极。 该导电屏障允许在涉及退火的IC工艺中使用铱(Ir)金属。 已经发现,分离硅衬底与Ir膜与中间相邻的钽(Ta)膜非常有效地抑制层之间的扩散。 Ir防止退火过程中氧进入硅的相互扩散。 Ta或TaN层防止Ir扩散到硅中。 这种Ir / TaN结构保护了硅界面,从而使粘附,电导,小丘和剥离问题最小化。 使用覆盖Ir / TaN结构的Ti也有助于防止退火过程中的小丘形成。 还提供了形成多层Ir导电结构和Ir铁电电极的方法。