会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Laser transfer article and method of making
    • 激光转印制品及其制作方法
    • US07423286B2
    • 2008-09-09
    • US10935461
    • 2004-09-07
    • Erik S. HandyJoseph Michael KunzePeter T. Kazlas
    • Erik S. HandyJoseph Michael KunzePeter T. Kazlas
    • H01L23/58H01L29/10
    • H01L21/6835H01L51/0013H01L2221/68359H01L2221/68363H01L2221/68368H01L2924/0002H01L2924/19041Y10T428/26Y10T428/2839Y10T428/2848H01L2924/00
    • The present invention is directed to methods for transferring pre-formed electronic devices, such as transistors, resistors, capacitors, diodes, semiconductors, inductors, conductors, and dielectrics, and segments of materials, such as magnetic materials and crystalline materials onto a variety of receiving substrates using energetic beam transfer methods. Also provided is a consumable intermediate comprising a transfer substrate and a transfer material coated thereon, wherein the transfer material may be comprised of pre-formed electronic devices or magnetic materials and crystalline materials that may be transferred to a variety of receiving substrates. Aspects of the present invention may also be used to form multi-device electronic components such as sensor devices, electro-optical devices, communications devices, transmit-receive modules, and phased arrays using the consumable intermediates and transfer methods described herein.
    • 本发明涉及用于将诸如晶体管,电阻器,电容器,二极管,半导体,电感器,导体和电介质的预成型电子器件和诸如磁性材料和结晶材料的材料段转移到各种 使用能量束传递方法接收衬底。 还提供了包括转印基材和涂覆在其上的转印材料的消耗性中间体,其中转印材料可以由预先形成的电子器件或磁性材料以及可以转移到各种接收基底的结晶材料构成。 本发明的各方面也可用于使用本文描述的可消耗的中间体和转移方法来形成诸如传感器装置,电光装置,通信装置,发射 - 接收模块和相控阵列的多装置电子部件。
    • 3. 发明申请
    • PROCESSES FOR FORMING BACKPLANES FOR ELECTRO-OPTIC DISPLAYS
    • 用于形成电光显示器的背板的方法
    • US20100265239A1
    • 2010-10-21
    • US12825991
    • 2010-06-29
    • Karl R. AmundsonGuy M. DannerGregg M. DuthalerPeter T. KazlasYu ChenKevin L. DenisNathan R. KaneAndrew P. Ritenour
    • Karl R. AmundsonGuy M. DannerGregg M. DuthalerPeter T. KazlasYu ChenKevin L. DenisNathan R. KaneAndrew P. Ritenour
    • G06F3/038H01J9/24H01L21/20
    • H01L27/1266B60C23/04G02F1/133305G02F1/1362G02F1/167G02F2001/13613H01L27/1214H01L27/1288H01L29/66765H01L29/78603
    • A non-linear element is formed on a flexible substrate by securing the substrate to a rigid carrier, forming the non-linear element, and then separating the flexible substrate from the carrier. The process allows flexible substrates to be processed in a conventional fab intended to process rigid substrates. In a second method, a transistor is formed on a insulating substrate by forming gate electrodes, depositing a dielectric layer, a semiconductor layer and a conductive layer, patterning the conductive layer to form source, drain and pixel electrodes, covering the channel region of the resultant transistor with an etch-resistant material and etching using the etch-resistant material and the conductive layer as a mask, the etching extending substantially through the semiconductor layer between adjacent transistors. The invention also provides a process for forming a diode on a substrate by depositing on the substrate a first conductive layer, and a second patterned conductive layer and a patterned dielectric layer over parts of the first conductive layer, and etching the first conductive layer using the second conductive layer and dielectric layer as an etch mask. Finally, the invention provides a process for driving an impulse-sensitive electro-optic display.
    • 通过将基板固定到刚性载体上,形成非线性元件,然后将柔性基板与载体分离,在柔性基板上形成非线性元件。 该方法允许柔性基底在旨在处理刚性基底的常规晶圆中进行加工。 在第二种方法中,通过形成栅电极,沉积介电层,半导体层和导电层,在绝缘基板上形成晶体管,图案化导电层以形成源极,漏极和像素电极,覆盖该沟道区 具有耐蚀刻材料的合成晶体管和使用耐蚀刻材料和导电层作为掩模的蚀刻,蚀刻基本上延伸通过相邻晶体管之间的半导体层。 本发明还提供了一种通过在衬底上沉积第一导电层以及第二图案化导电层和在第一导电层的部分上的图案化电介质层在衬底上形成二极管的工艺,并且使用 第二导电层和介电层作为蚀刻掩模。 最后,本发明提供一种驱动脉冲敏感电光显示器的方法。
    • 4. 发明申请
    • Light emitting devices and displays with improved performance
    • 具有改进性能的发光器件和显示器
    • US20100051901A1
    • 2010-03-04
    • US12454705
    • 2009-05-21
    • Peter T. KazlasMarshall CoxSeth Coe-SullivanDorai RamprasadJonathan S. SteckelCraig BreenCaroline J. RoushMead Misic
    • Peter T. KazlasMarshall CoxSeth Coe-SullivanDorai RamprasadJonathan S. SteckelCraig BreenCaroline J. RoushMead Misic
    • H01L33/00
    • C09K11/565B82Y20/00B82Y30/00H01L51/5012H05B33/14
    • Light emitting devices and devices with improved performance are disclosed. In one embodiment, a light emitting device includes an emissive material disposed between a first electrode, and a second electrode, wherein the emissive material comprises semiconductor nanocrystals capable of emitting light including a maximum peak emission in the blue region of the spectrum upon excitation, wherein the light emitting device can have a peak external quantum efficiency of at least about 1.0 percent. Also disclosed is a display including at least one light emitting device including an emissive material disposed between a first electrode, and a second electrode, wherein the at least one light emitting device can have a peak external quantum efficiency of at least about 1.0 percent. In another embodiment, a light emitting device includes an emissive material disposed between a first electrode and a second electrode. The emissive material comprises semiconductor nanocrystals capable of emitting light including a maximum peak emission in the blue region of the spectrum upon excitation. The device further includes a first spacer material disposed between the emissive material and the first electrode. In certain embodiments, the device further includes a first material capable of transporting charge disposed between the emissive material and the first electrode, wherein the first spacer material is disposed between the emissive material and the first electrode. In certain embodiments, for example, light emitting devices can have a maximum peak emission in a range from about 380 nm to about 500 nm. In certain embodiments, the light emitting device can have a maximum peak emission peak in the range from about 450 nm to about 490 nm. Displays including light emitting devices are also disclosed.
    • 公开了具有改进性能的发光器件和器件。 在一个实施例中,发光器件包括设置在第一电极和第二电极之间的发光材料,其中发射材料包含能够发射包括在激发的光谱的蓝色区域中的最大峰值发射的光的半导体纳米晶体,其中 发光器件可以具有至少约1.0%的峰值外部量子效率。 还公开了一种显示器,其包括至少一个包括设置在第一电极和第二电极之间的发光材料的发光器件,其中所述至少一个发光器件可以具有至少约1.0%的峰值外部量子效率。 在另一个实施例中,发光器件包括设置在第一电极和第二电极之间的发光材料。 发射材料包括能够发射光的半导体纳米晶体,其包括在激发时在光谱的蓝色区域中的最大峰值发射。 该装置还包括设置在发光材料和第一电极之间的第一间隔物材料。 在某些实施例中,该装置还包括能够传输设置在发射材料和第一电极之间的电荷的第一材料,其中第一间隔物材料设置在发光材料和第一电极之间。 在某些实施例中,例如,发光器件可以具有在约380nm至约500nm范围内的最大峰值发射。 在某些实施方案中,发光器件可具有在约450nm至约490nm范围内的最大峰值发射峰值。 还公开了包括发光器件的显示器。
    • 5. 发明授权
    • Processes for forming backplanes for electro-optic displays
    • 用于形成电光显示器背板的工艺
    • US07223672B2
    • 2007-05-29
    • US10249624
    • 2003-04-24
    • Peter T. KazlasNathan R. KaneAndrew P. Ritenour
    • Peter T. KazlasNathan R. KaneAndrew P. Ritenour
    • H01L21/30
    • H01L27/1266B60C23/04G02F1/133305G02F1/1362G02F1/167G02F2001/13613H01L27/1214H01L27/1288H01L29/66765H01L29/78603
    • A non-linear element is formed on a flexible substrate by securing the substrate to a rigid carrier, forming the non-linear element, and then separating the flexible substrate from the carrier. The process allows flexible substrates to be processed in a conventional fab intended to process rigid substrates. In a second method, a transistor is formed on a insulating substrate by forming gate electrodes, depositing a dielectric layer, a semiconductor layer and a conductive layer, patterning the conductive layer to form source, drain and pixel electrodes, covering the channel region of the resultant transistor with an etch-resistant material and etching using the etch-resistant material and the conductive layer as a mask, the etching extending substantially through the semiconductor layer between adjacent transistors. The invention also provides a process for forming a diode on a substrate by depositing on the substrate a first conductive layer, and a second patterned conductive layer and a patterned dielectric layer over parts of the first conductive layer, and etching the first conductive layer using the second conductive layer and dielectric layer as an etch mask. Finally, the invention provides a process for driving an impulse-sensitive electro-optic display.
    • 通过将基板固定到刚性载体上,形成非线性元件,然后将柔性基板与载体分离,在柔性基板上形成非线性元件。 该方法允许柔性基底在旨在处理刚性基底的常规晶圆中进行加工。 在第二种方法中,通过形成栅电极,沉积介电层,半导体层和导电层,在绝缘基板上形成晶体管,图案化导电层以形成源极,漏极和像素电极,覆盖该沟道区 具有耐蚀刻材料的合成晶体管和使用耐蚀刻材料和导电层作为掩模的蚀刻,蚀刻基本上延伸通过相邻晶体管之间的半导体层。 本发明还提供了一种通过在衬底上沉积第一导电层以及第二图案化导电层和在第一导电层的部分上的图案化电介质层在衬底上形成二极管的工艺,并且使用 第二导电层和介电层作为蚀刻掩模。 最后,本发明提供一种驱动脉冲敏感电光显示器的方法。
    • 8. 发明授权
    • Methods for addressing electrophoretic displays
    • 解决电泳显示的方法
    • US06531997B1
    • 2003-03-11
    • US09561424
    • 2000-04-28
    • Holly G GatesBarrett ComiskeyPeter T. KazlasJonathan D. AlbertPaul S Drzaic
    • Holly G GatesBarrett ComiskeyPeter T. KazlasJonathan D. AlbertPaul S Drzaic
    • G09G334
    • G09G3/344G02F1/167G09G2310/0254G09G2310/04G09G2310/06G09G2320/0204
    • Novel addressing schemes for controlling bistable electronically addressable displays include the use of addressing signals with additional signals having opposite polarity and equal integrated signal strength, and addressing schemes that minimize the number of state changes that a display element undergoes. In one embodiment, pre-pulses are employed to apply a pre-stress to an display element that is equal and opposite to the electrical stress applied in addressing the element. In another embodiment, the addressing signal is followed by a post-stressing pulse. Methods for minimizing the number of display elements that must change state to change the image displayed include the determination of a set of elements that must be deactivated and a set of elements that must be activated to change the image depicted by a display. Alternatively, only the elements forming one image are deactivated before the elements forming a different image are activated.
    • 用于控制双稳态电子可寻址显示器的新型寻址方案包括使用具有相反极性和相等的集成信号强度的附加信号的寻址信号,以及使显示元件经历的状态变化的数量最小化的寻址方案。 在一个实施例中,采用预脉冲来对显示元件施加预应力,所述显示元件与在寻址元件时施加的电应力相等和相反。 在另一个实施例中,寻址信号之后是后应力脉冲。 用于最小化必须改变状态以改变显示的图像的显示元素的数量的方法包括必须被去激活的一组元素的确定以及必须被激活以改变由显示器描绘的图像的一组元素。 或者,只有形成一个图像的元素在形成不同图像的元素被激活之前被去激活。