会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Semiconductor device and method of manufacturing thereof
    • 半导体装置及其制造方法
    • US08164100B2
    • 2012-04-24
    • US12338151
    • 2008-12-18
    • Hirokazu FujiwaraMasaki KonishiEiichi Okuno
    • Hirokazu FujiwaraMasaki KonishiEiichi Okuno
    • H01L29/72
    • H01L29/7813H01L29/04H01L29/1608H01L29/66068H01L29/872
    • A semiconductor device is provided in which the contact resistance of the interface between an electrode and the semiconductor substrate is reduced. The semiconductor device includes a 4H polytype SiC substrate, and an electrode formed on a surface of the substrate. A 3C polytype layer, which extends obliquely relative to the surface of the substrate and whose end portion at the substrate surface is in contact with the electrode, is formed at the surface of the substrate. The 3C polytype layer has a lower bandgap than 4H polytype. Hence, electrons present in the 4H polytype region pass through the 3C polytype layer and reach the electrode. More precisely, the width of the passageway of the electrons is determined by the thickness of the 3C polytype layer. Consequently, with this semiconductor device, in which the passageway of the electrons is narrow, the electrons are able to reach the electrode at a speed close to the theoretical value, by the quantum wire effect. In this way, the contact resistance can be reduced in the semiconductor device.
    • 提供一种半导体器件,其中电极和半导体衬底之间的界面的接触电阻降低。 半导体器件包括4H多型SiC衬底和形成在衬底的表面上的电极。 形成在基板表面上相对于基板的表面倾斜地延伸并且其基板表面的端部与电极接触的3C多型层。 3C多型层具有比4H多型更低的带隙。 因此,存在于4H多型区域中的电子通过3C多型层并到达电极。 更准确地说,电子通道的宽度由3C多型层的厚度决定。 因此,通过电子通道窄的这种半导体器件,电子能够以接近理论值的速度通过量子线效应到达电极。 以这种方式,可以在半导体器件中降低接触电阻。
    • 6. 发明授权
    • Method for manufacturing SiC semiconductor device
    • SiC半导体器件的制造方法
    • US07745276B2
    • 2010-06-29
    • US12068263
    • 2008-02-05
    • Eiichi OkunoHiroki NakamuraNaohiro Suzuki
    • Eiichi OkunoHiroki NakamuraNaohiro Suzuki
    • H01L21/8234
    • H01L29/7828H01L29/045H01L29/0615H01L29/0619H01L29/0657H01L29/1608H01L29/45H01L29/66068H01L29/7802H01L29/7811H01L29/7813
    • A method for manufacturing a SiC semiconductor device includes: preparing a SiC substrate having a (11-20)-orientation surface; forming a drift layer on the substrate; forming a base region in the drift layer; forming a first conductivity type region in the base region; forming a channel region on the base region to couple between the drift layer and the first conductivity type region; forming a gate insulating film on the channel region; forming a gate electrode on the gate insulating film; forming a first electrode to electrically connect to the first conductivity type region; and forming a second electrode on a backside of the substrate. The device controls current between the first and second electrodes by controlling the channel region. The forming the base region includes epitaxially forming a lower part of the base region on the drift layer.
    • 一种制造SiC半导体器件的方法包括:制备具有(11-20)取向表面的SiC衬底; 在衬底上形成漂移层; 在漂移层中形成基极区; 在所述基底区域中形成第一导电类型区域; 在所述基极区上形成沟道区,以在所述漂移层和所述第一导电类型区之间耦合; 在沟道区上形成栅极绝缘膜; 在栅极绝缘膜上形成栅电极; 形成电连接到所述第一导电类型区域的第一电极; 以及在所述衬底的背面上形成第二电极。 该器件通过控制沟道区域来控制第一和第二电极之间的电流。 形成基极区域包括外延地形成漂移层上的基极区域的下部。
    • 8. 发明申请
    • SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THEREOF
    • 半导体器件及其制造方法
    • US20090159898A1
    • 2009-06-25
    • US12338151
    • 2008-12-18
    • Hirokazu FUJIWARAMasaki KonishiEiichi Okuno
    • Hirokazu FUJIWARAMasaki KonishiEiichi Okuno
    • H01L29/24H01L21/265
    • H01L29/7813H01L29/04H01L29/1608H01L29/66068H01L29/872
    • A semiconductor device is provided in which the contact resistance of the interface between an electrode and the semiconductor substrate is reduced. The semiconductor device includes a 4H polytype SiC substrate, and an electrode formed on a surface of the substrate. A 3C polytype layer, which extends obliquely relative to the surface of the substrate and whose end portion at the substrate surface is in contact with the electrode, is formed at the surface of the substrate. The 3C polytype layer has a lower bandgap than 4H polytype. Hence, electrons present in the 4H polytype region pass through the 3C polytype layer and reach the electrode. More precisely, the width of the passageway of the electrons is determined by the thickness of the 3C polytype layer. Consequently, with this semiconductor device, in which the passageway of the electrons is narrow, the electrons are able to reach the electrode at a speed close to the theoretical value, by the quantum wire effect. In this way, the contact resistance can be reduced in the semiconductor device.
    • 提供一种半导体器件,其中电极和半导体衬底之间的界面的接触电阻降低。 半导体器件包括4H多型SiC衬底和形成在衬底的表面上的电极。 形成在基板表面上相对于基板的表面倾斜地延伸并且其基板表面的端部与电极接触的3C多型层。 3C多型层具有比4H多型更低的带隙。 因此,存在于4H多型区域中的电子通过3C多型层并到达电极。 更准确地说,电子通道的宽度由3C多型层的厚度决定。 因此,通过电子通道窄的这种半导体器件,电子能够以接近理论值的速度通过量子线效应到达电极。 以这种方式,可以在半导体器件中降低接触电阻。