会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Twin-tub complementary heterostructure field effect transistor fab
process
    • 双槽互补异质结构场效应晶体管工艺
    • US5429963A
    • 1995-07-04
    • US232978
    • 1994-04-25
    • Edgar J. MartinezMichael ShurFritz SchuermeyerCharles Cerny
    • Edgar J. MartinezMichael ShurFritz SchuermeyerCharles Cerny
    • H01L21/8252H01L27/06H01L27/092H01L21/331
    • H01L21/8252H01L27/0605H01L27/0922
    • This is a fabrication process for complementary III-V HFETs in which devices are built side-by-side in doped-areas, known as "tubs", grown by molecular beam epitaxy on indium phosphide (InP) substrates, or other material systems such as materials grown on GaAs substrates. The layers grown are a semi-insulating buffer layer of InAlAs, a InGaAs channel, an InAlAs barrier layer and finally an InGaAs cap layer. All layers are lattice matched or pseudomorphic to the InP substrate. After mesa etching of areas around the transistor, a high temperature silicon nitride (Si.sub.3 N.sub.4) layer is deposited using chemical vapor deposition, and photoresist is deposited. Then n-well and p-well areas are formed in turn, with appropriate ion-implantation, stripping of the photoresist, and annealing to activate the dopants. Then the Si.sub.3 N.sub.4 is stripped and the samples thoroughly cleaned. Then, the refractory gate metal is sputtered, delineated with photoresist and reactive ion etch procedures. Areas for n-ohmic and p-ohmic contacts are formed, using with Si.sub.3 N.sub.4 and photoresist covering, ion implanting, and annealing. Finally the p- and n-ohmic contact metals are evaporated and alloyed. The typical n-ohmic metal system is Au/Ge/Ni while Au/Zn is used for the formation of the p-ohmic contacts. The integrated circuit is completed by depositing and patterning the interconnect metal.
    • 这是互补III-V HFET的制造工艺,其中器件在掺杂区域(称为“桶”)中并排构建,通过磷化铟(InP)衬底上的分子束外延生长,或其他材料系统 作为在GaAs衬底上生长的材料。 所生长的层是InAlAs,InGaAs沟道,InAlAs阻挡层和最终为InGaAs覆盖层的半绝缘缓冲层。 所有层与InP衬底晶格匹配或伪构。 在晶体管周围区域的台面蚀刻之后,使用化学气相沉积沉积高温氮化硅(Si 3 N 4)层,并沉积光致抗蚀剂。 然后依次形成n阱和p阱区,通过适当的离子注入,剥离光致抗蚀剂,并退火以激活掺杂剂。 然后将Si3N4剥离,样品彻底清洗。 然后,溅射耐火栅极金属,用光致抗蚀剂和反应离子蚀刻程序描绘。 使用Si3N4和光致抗蚀剂覆盖,离子注入和退火,形成用于n-欧姆和p-欧姆接触的区域。 最后,p型和n型欧姆接触金属被蒸发并合金化。 典型的n欧姆金属系统是Au / Ge / Ni,而Au / Zn用于形成p欧姆接触。 集成电路通过沉积和图案化互连金属而完成。
    • 4. 发明授权
    • Deep ultraviolet light emitting diode
    • 深紫外线发光二极管
    • US08907322B2
    • 2014-12-09
    • US13161961
    • 2011-06-16
    • Remigijus GaskaMaxim S. ShatalovMichael Shur
    • Remigijus GaskaMaxim S. ShatalovMichael Shur
    • H01L31/00H01L33/10H01L33/04H01L33/00H01L33/40H01L33/06H01L33/22H01L33/38
    • H01L33/04H01L33/06H01L33/10H01L33/22H01L33/385H01L33/405
    • A light emitting diode is provided, which includes an n-type contact layer and a light generating structure adjacent to the n-type contact layer. The light generating structure includes a set of quantum wells. The contact layer and light generating structure can be configured so that a difference between an energy of the n-type contact layer and an electron ground state energy of a quantum well is greater than an energy of a polar optical phonon in a material of the light generating structure. Additionally, the light generating structure can be configured so that its width is comparable to a mean free path for emission of a polar optical phonon by an electron injected into the light generating structure. The diode can include a blocking layer, which is configured so that a difference between an energy of the blocking layer and the electron ground state energy of a quantum well is greater than the energy of the polar optical phonon in the material of the light generating structure. The diode can include a composite contact, including an adhesion layer, which is at least partially transparent to light generated by the light generating structure and a reflecting metal layer configured to reflect at least a portion of the light generated by the light generating structure.
    • 提供一种发光二极管,其包括n型接触层和与n型接触层相邻的发光结构。 光产生结构包括一组量子阱。 接触层和发光结构可以被配置为使得n型接触层的能量与量子阱的电子基态能量之间的差大于光的材料中的极性光学声子的能量 生成结构。 另外,发光结构可以被配置为使得其宽度与用于通过注入到光产生结构中的电子发射极性光学声子的平均自由程相当。 二极管可以包括阻挡层,其被配置为使得阻挡层的能量与量子阱的电子基态能量之间的差异大于光生成结构的材料中的极化光学声子的能量 。 二极管可以包括复合触点,其包括对由光产生结构产生的光至少部分透明的粘附层和被配置为反射由光产生结构产生的光的至少一部分的反射金属层。
    • 8. 发明授权
    • Device having active region with lower electron concentration
    • 具有较低电子浓度的有源区的器件
    • US08497527B2
    • 2013-07-30
    • US12402526
    • 2009-03-12
    • Alexei KoudymovMichael ShurRemigijus Gaska
    • Alexei KoudymovMichael ShurRemigijus Gaska
    • H01L29/66
    • H01L29/7787H01L29/0657H01L29/2003H01L29/207H01L29/518H01L29/7831
    • A device comprising a two-dimensional electron gas that includes an active region located in a portion of the electron gas is disclosed. The active region comprises an electron concentration less than an electron concentration of a set of non-active regions of the electron gas. The device includes a controlling terminal located on a first side of the active region. The device can comprise, for example, a field effect transistor (FET) in which the gate is located and used to control the carrier injection into the active region and define the boundary condition for the electric field distribution within the active region. The device can be used to generate, amplify, filter, and/or detect electromagnetic radiation of radio frequency (RF) and/or terahertz (THz) frequencies.
    • 公开了一种包括二维电子气体的装置,其包括位于电子气体的一部分中的有源区。 有源区包含小于电子气体的一组非有源区的电子浓度的电子浓度。 该装置包括位于有源区域的第一侧上的控制终端。 该器件可以包括例如场效应晶体管(FET),其中栅极位于并用于控制载流子注入有源区域并且限定用于有源区域内的电场分布的边界条件。 该装置可用于产生,放大,滤波和/或检测射频(RF)和/或太赫兹(THz)频率的电磁辐射。