会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Slotted waveguide structure for generating plasma discharges
    • 用于产生等离子体放电的开槽波导结构
    • US06204606B1
    • 2001-03-20
    • US09406907
    • 1999-09-28
    • Paul D. SpenceW. Edward Deeds
    • Paul D. SpenceW. Edward Deeds
    • H05H146
    • H01J37/32229H01J37/32192H05H1/46
    • A waveguide structure has at least one shaped slot machined in the wall of the waveguide. The slot is configured such that a high voltage is generated across the slot when the waveguide is suitably excited with high-power microwaves. The strong electric fields generated in the region of the slot can be used to produce a non-equilibrium plasma discharge in a working gas introduced in the vicinity of the slot. Various substrates can be translated past the slot and exposed to the plasma species generated by the microwave discharge. The slotted waveguide structure is designed to operate as a traveling wave structure with microwave energy uniformly dissipated along the length of the slot. Several methods are disclosed for providing uniform power dissipation. These methods include changing the dimensions of the waveguide, altering the position and shape of the wall slot, coupling power into the waveguide by means of auxiliary sources, and using an auxiliary ground plane. The auxiliary ground plane can also serve as a secondary electrode for the application of a low-frequency voltage for the enhancement of high-pressure operation. Altering the background gas pressure, gas composition, gas flow rate, and gas flow pattern provide additional ways to affect the plasma discharge. The structure can be designed to operate over the pressure range of about 10 Torr to atmospheric pressure (i.e., about 760 Torr) using a wide variety of gases and gas mixtures.
    • 波导结构具有加工在波导壁中的至少一个成形槽。 槽被配置成使得当波导被大功率微波适当地激发时,跨越槽产生高电压。 在狭缝区域产生的强电场可以用于在引入槽的附近的工作气体中产生非平衡等离子体放电。 可以将各种衬底转移通过狭槽并暴露于由微波放电产生的等离子体物质。 开槽波导结构被设计为作为行波结构工作,其中微波能量沿着槽的长度均匀消散。 公开了几种用于提供均匀功率耗散的方法。 这些方法包括改变波导的尺寸,改变壁槽的位置和形状,借助于辅助源将功率耦合到波导中,并且使用辅助接地平面。 辅助接地层也可以作为用于施加低频电压的次级电极,用于增强高压操作。 改变背景气体压力,气体组成,气体流速和气体流动模式提供了影响等离子体放电的额外方式。 该结构可以设计成使用各种各样的气体和气体混合物在约10乇至大气压力(即约760乇)的压力范围内操作。
    • 7. 发明授权
    • Discharge methods and electrodes for generating plasmas at one
atmosphere of pressure, and materials treated therewith
    • 在一个压力气氛下产生等离子体的放电方法和电极,以及用其处理的材料
    • US5895558A
    • 1999-04-20
    • US719588
    • 1996-09-25
    • Paul D. Spence
    • Paul D. Spence
    • B01J19/08H01J37/32H05F3/00
    • H01J37/3244H01J37/32H01J37/32027H01J37/32082H01J37/3277H01J37/32825Y10S422/906
    • Two methods and corresponding electrode designs are provided for the generation of a plasma at or about one atmosphere. Using these methods, various webs, films and three-dimensional objects are beneficially treated in a reduced amount of time. A first method utilizes a repetitive, asymmetric voltage pulse to generate a plasma discharge between two electrodes. An asymmetric voltage pulse is used to generate a discharge in which a substrate can be exposed predominately to either positive or negative plasma species depending on the voltage polarity used. A second method uses the gap capacitance of an electrode pair and an external inductor in shunt to form a resonant LC circuit. The circuit is driven by a high power radio frequency source operating at 1 to 30 MHz to generate a uniform discharge between the electrode pair. Both methods have temperature controlled discharge surfaces with supply gas temperature, humidity and flow rate control. The gas flow is typically sufficient to cause a turbulent flow field in the discharge region where materials are treated. Electrode pairs implement these methods and include a metal faced electrode and a dielectric covered electrode, one or both of which have a series of holes extending through the electrode face for supply gas flow. The second of the above-described methods will also operate with paired, metal faced electrodes, but under more restricted operating conditions.
    • 提供了两种方法和相应的电极设计用于在一个或几个大气压下产生等离子体。 使用这些方法,以减少的时间量有利地处理各种网,膜和三维物体。 第一种方法利用重复的非对称电压脉冲在两个电极之间产生等离子体放电。 使用非对称电压脉冲来产生放电,其中基于所使用的电压极性,衬底可以主要暴露于正或负等离子体物质。 第二种方法使用分流器中的电极对和外部电感器的间隙电容来形成谐振LC电路。 该电路由工作于1至30MHz的高功率射频源驱动,以在电极对之间产生均匀的放电。 两种方法都具有温度控制的排放表面,供应气体温度,湿度和流量控制。 气流通常足以在排出区域引起湍流流场,其中材料被处理。 电极对实现这些方法,并且包括金属面电极和电介质覆盖电极,其中一个或两个具有延伸穿过电极面的一系列孔,用于供应气体流动。 上述方法中的第二种也将使用成对的金属面对电极操作,但是在更受限制的操作条件下。
    • 9. 发明授权
    • Resonant excitation method and apparatus for generating plasmas
    • 用于产生等离子体的共振激发方法和装置
    • US06416633B1
    • 2002-07-09
    • US09564100
    • 2000-05-03
    • Paul D. Spence
    • Paul D. Spence
    • B01J1908
    • H01J37/3244H01J37/32H01J37/32027H01J37/32082H01J37/3277H01J37/32825Y10S422/906
    • Two methods and corresponding electrode designs are provided for the generation of a plasma, for example, at or about one atmosphere. Using these methods, various webs, films and three-dimensional objects are beneficially treated in a reduced amount of time. A first method utilizes a repetitive, asymmetric voltage pulse to generate a plasma discharge between two electrodes. An asymmetric voltage pulse is used to generate a discharge in which a substrate can be exposed predominately to either positive or negative plasma species depending on the voltage polarity used. A second method uses the gap capacitance of an electrode pair and an external inductor in shunt to form a resonant LC circuit. The circuit is driven by a high power radio frequency source operating at 1 to 30 MHz to generate a uniform discharge between the electrode pair. Both methods have temperature controlled discharge surfaces with supply gas temperature, humidity and flow rate control. The gas flow is typically sufficient to cause a turbulent flow field in the discharge region where materials are treated. Electrode pairs implement these methods and include a metal faced electrode and a dielectric covered electrode, one or both of which have a series of holes extending through the electrode face for supply gas flow. The second of the above-described methods will also operate with paired, metal faced electrodes, but under more restricted operating conditions.
    • 提供两种方法和相应的电极设计用于产生等离子体,例如在一个或大约一个大气压下。 使用这些方法,以减少的时间量有利地处理各种网,膜和三维物体。 第一种方法利用重复的非对称电压脉冲在两个电极之间产生等离子体放电。 使用非对称电压脉冲来产生放电,其中基于所使用的电压极性,衬底可以主要暴露于正或负等离子体物质。 第二种方法使用分流器中的电极对和外部电感器的间隙电容来形成谐振LC电路。 该电路由工作于1至30MHz的高功率射频源驱动,以在电极对之间产生均匀的放电。 两种方法都具有温度控制的排放表面,供应气体温度,湿度和流量控制。 气流通常足以在排出区域引起湍流流场,其中材料被处理。 电极对实现这些方法,并且包括金属面电极和电介质覆盖电极,其中一个或两个具有延伸穿过电极面的一系列孔,用于供应气体流动。 上述方法中的第二种也将使用成对的金属面对电极操作,但是在更受限制的操作条件下。
    • 10. 发明授权
    • Discharge method and apparatus for generating plasmas
    • 用于产生等离子体的放电方法和装置
    • US6059935A
    • 2000-05-09
    • US218572
    • 1998-12-22
    • Paul D. Spence
    • Paul D. Spence
    • B01J19/08H01J37/32
    • H01J37/3244H01J37/32H01J37/32027H01J37/32082H01J37/3277H01J37/32825Y10S422/906
    • Two methods and corresponding electrode designs are provided for the generation of a plasma, for example, at or about one atmosphere. Using these methods, various webs, films and three-dimensional objects are beneficially treated in a reduced amount of time. A first method utilizes a repetitive, asymmetric voltage pulse to generate a plasma discharge between two electrodes. An asymmetric voltage pulse is used to generate a discharge in which a substrate can be exposed predominately to either positive or negative plasma species depending on the voltage polarity used. A second method uses the gap capacitance of an electrode pair and an external inductor in shunt to form a resonant LC circuit. The circuit is driven by a high power radio frequency source operating at 1 to 30 MHz to generate a uniform discharge between the electrode pair. Both methods have temperature controlled discharge surfaces with supply gas temperature, humidity and flow rate control. The gas flow is typically sufficient to cause a turbulent flow field in the discharge region where materials are treated. Electrode pairs implement these methods and include a metal faced electrode and a dielectric covered electrode, one or both of which have a series of holes extending through the electrode face for supply gas flow. The second of the above-described methods will also operate with paired, metal faced electrodes, but under more restricted operating conditions.
    • 提供两种方法和相应的电极设计用于产生等离子体,例如在一个或大约一个大气压下。 使用这些方法,以减少的时间量有利地处理各种网,膜和三维物体。 第一种方法利用重复的非对称电压脉冲在两个电极之间产生等离子体放电。 使用非对称电压脉冲来产生放电,其中基于所使用的电压极性,衬底可以主要暴露于正或负等离子体物质。 第二种方法使用分流器中的电极对和外部电感器的间隙电容来形成谐振LC电路。 该电路由工作于1至30MHz的高功率射频源驱动,以在电极对之间产生均匀的放电。 两种方法都具有温度控制的排放表面,供应气体温度,湿度和流量控制。 气流通常足以在排出区域引起湍流流场,其中材料被处理。 电极对实现这些方法,并且包括金属面电极和电介质覆盖电极,其中一个或两个具有延伸穿过电极面的一系列孔,用于供应气体流动。 上述方法中的第二种也将使用成对的金属面对电极操作,但是在更受限制的操作条件下。