会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Module interconnection testing scheme
    • 模块互连测试方案
    • US4241307A
    • 1980-12-23
    • US934936
    • 1978-08-18
    • Se June Hong
    • Se June Hong
    • G01R31/28G01R31/02G01R31/04G01R31/3185
    • G01R31/318505G01R31/024G01R31/041
    • This specification describes the testing of interconnections between modules mounted on a card and between the modules and the input and output terminals of the card. Each of the modules has an Exclusive-OR circuit which receives an input from each of the input pins of the module and has a single output which is taken off an output pin of the module. Also, each of the modules has a test input circuit for accessing all of the output pins of the module in parallel from a single input terminal. The test input circuits are used to apply a binary 0 followed by a binary 1 to all the outputs of all the modules. The Exclusive-OR circuits are used to monitor the response to those signals. By testing in this manner, all the connections between the modules and also between the modules and the card terminals can be checked for stuck ones and zeros. In the preferred embodiment a more complex but still relatively simple bit pattern can test all the interconnection nets to determine if there are shorts between any of the nets.
    • 本规范描述了安装在卡上的模块和模块与卡的输入和输出端子之间的互连的测试。 每个模块具有异或电路,其接收来自模块的每个输入引脚的输入,并且具有从模块的输出引脚取出的单个输出。 此外,每个模块具有用于从单个输入端子并行访问模块的所有输出引脚的测试输入电路。 测试输入电路用于将二进制0和二进制1应用于所有模块的所有输出。 异或电路用于监视对这些信号的响应。 通过以这种方式进行测试,可以检查模块之间以及模块和卡终端之间的所有连接,以确定卡住的零和零。 在优选实施例中,更复杂但仍然相对简单的位模式可以测试所有互连网络,以确定任何网络之间是否存在短路。
    • 4. 发明授权
    • Cascade boosting of predictive models
    • 级联提升预测模型
    • US06546379B1
    • 2003-04-08
    • US09427064
    • 1999-10-26
    • Se June HongBarry K. Rosen
    • Se June HongBarry K. Rosen
    • G06F1518
    • G06K9/6256G06N5/025G06N99/005
    • A method of boosting of predictive models, called cascade boosting, for resolving the interpretability problem of previous boosting methods while mitigating the fragmentation problem when applied to decision trees. This method of cascade boosting always applies a single weak model to any given data point. An improvement to the common method of boosting lies in how weak models are organized in a decision list rather than a weighted average. Cascade boosting resolves the interpretability problem of previous boosting methods while mitigating the fragmentation problem when applied to decision trees. Cascade boosting is simplest when applied to segmented predictive models but may also be applied to predictive models that do not explicitly segment the space of possible data points. The predictive model resulting from cascade boosting has fewer rules, or tree leaves, thereby enabling a modeler to better understand the correlations among the data.
    • 一种提高预测模型的方法,称为级联升压,用于解决先前的升压方法的可解释性问题,同时在应用于决策树时减轻分段问题。 这种级联升压的方法总是将单个弱模型应用于任何给定的数据点。 普遍提升方法的改进在于决策列表中组织的模型薄弱,而不是加权平均数。 级联提升解决了以前的提升方法的可解释性问题,同时在应用于决策树时减轻了碎片问题。 级联升压在应用于分段预测模型时最简单,但也可应用于未明确分割可能数据点空间的预测模型。 由级联提升产生的预测模型具有较少的规则或树叶,从而使建模者能够更好地了解数据之间的相关性。
    • 5. 发明授权
    • Method for ensemble predictive modeling by multiplicative adjustment of class probability: APM (adjusted probability model)
    • 通过乘法调整类概率进行集体预测建模的方法:APM(调整概率模型)
    • US07020593B2
    • 2006-03-28
    • US10309191
    • 2002-12-04
    • Se June HongJonathan R. HoskingRamesh Natarajan
    • Se June HongJonathan R. HoskingRamesh Natarajan
    • G06F15/18
    • G06K9/6217
    • A new method is used to model the class probability from data that is based on a novel multiplicative adjustment of the class probability by a plurality of items of evidence induced from training data. The optimal adjustment factors from each item of evidence can be determined by several techniques, a preferred embodiment thereof being the method of maximum likelihood. The evidence induced from the data can be any function of the feature variables, the simplest of which are the individual feature variables themselves. The adjustment factor of an item of evidence Ej is given by the ratio of the conditional probability P(C|Ej) of the class C given Ej to the prior class probability P(C), exponentiated by a parameter aj. The method provides a new and useful way to aggregate probabilistic evidence so that the final model output exhibits a low error rate for classification, and also gives a superior lift curve when distinguishing between any one class and the remaining classes. A good prediction for the class response probability has many uses in data mining applications, such as using the probability to compute expected values of any function associated with the response, and in many marketing applications where lift curves are generated for selected prioritized target customers.
    • 一种新的方法用于从基于从训练数据引发的多个证据项的类概率的新颖的乘法调整的数据来建模类概率。 来自每个证据的最佳调整因子可以通过几种技术来确定,其优选实施方式是最大可能性的方法。 从数据引发的证据可以是特征变量的任何函数,其中最简单的是个体特征变量本身。 证据项目的调整因子E SUB由给定的类别C的条件概率P(C | E> j j)的比率给出 与以前的类概率P(C)进行比较,由参数α取幂。 该方法提供了一种新的有用的方法来聚合概率证据,使得最终模型输出表现出低的分类误差率,并且在区分任何一个类别和其余类别时也提供了优异的升力曲线。 类反应概率的良好预测在数据挖掘应用中有许多用途,例如使用概率来计算与响应相关联的任何函数的预期值,以及在为选定的优先级目标客户生成升降曲线的许多营销应用中。