会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Collaborative filtering utilizing a belief network
    • 利用信念网络进行协同过滤
    • US5704017A
    • 1997-12-30
    • US602238
    • 1996-02-16
    • David E. HeckermanJohn S. BreeseEric HorvitzDavid Maxwell Chickering
    • David E. HeckermanJohn S. BreeseEric HorvitzDavid Maxwell Chickering
    • G06Q30/02G06F17/00
    • H04N21/252G06Q30/02
    • The disclosed system provides an improved collaborative filtering system by utilizing a belief network, which is sometimes known as a Bayesian network. The disclosed system learns a belief network using both prior knowledge obtained from an expert in a given field of decision making and a database containing empirical data obtained from many people. The empirical data contains attributes of users as well as their preferences in the field of decision making. After initially learning the belief network, the belief network is relearned at various intervals when additional attributes are identified as having a causal effect on the preferences and data for these additional attributes can be gathered. This relearning allows the belief network to improve its accuracy at predicting preferences of a user. Upon each iteration of relearning, a cluster model is automatically generated that best predicts the data in the database. After relearning the belief network a number of times, the belief network is used to predict the preferences of a user using probabilistic inference. In performing probabilistic inference, the known attributes of a user are received and the belief network is accessed to determine the probability of the unknown preferences of the user given the known attributes. Based on these probabilities, the preference most likely to be desired by the user can be predicted.
    • 所公开的系统通过利用有时被称为贝叶斯网络的置信网络来提供改进的协同过滤系统。 所公开的系统使用从给定的决策领域的专家获得的现有知识和包含从许多人获得的经验数据的数据库来学习信念网络。 实证数据包含用户的属性以及决策领域的偏好。 在最初学习信念网络之后,当附加属性被识别为对偏好具有因果影响并且可以收集这些附加属性的数据时,信念网络以不同的间隔被重新学习。 这种再学习允许信念网络在预测用户的偏好时提高其准确性。 在重新学习的每次迭代之后,自动生成最能预测数据库中的数据的集群模型。 在重新学习信念网络多次之后,信念网络用于使用概率推理来预测用户的偏好。 在执行概率推理时,接收用户的已知属性,并且访问置信网络以确定给定已知属性的用户的未知偏好的概率。 基于这些概率,可以预测用户最可能希望的偏好。
    • 10. 发明授权
    • Speech recognition with mixtures of bayesian networks
    • 语音识别与贝叶斯网络的混合
    • US06336108B1
    • 2002-01-01
    • US09220197
    • 1998-12-23
    • Bo ThiessonChristopher A. MeekDavid Maxwell ChickeringDavid Earl HeckermanFileno A. AllevaMei-Yuh Hwang
    • Bo ThiessonChristopher A. MeekDavid Maxwell ChickeringDavid Earl HeckermanFileno A. AllevaMei-Yuh Hwang
    • G06F1518
    • G06K9/6296G06N5/025Y10S707/99945Y10S707/99948
    • The invention performs speech recognition using an array of mixtures of Bayesian networks. A mixture of Bayesian networks (MBN) consists of plural hypothesis-specific Bayesian networks (HSBNs) having possibly hidden and observed variables. A common external hidden variable is associated with the MBN, but is not included in any of the HSBNs. The number of HSBNs in the MBN corresponds to the number of states of the common external hidden variable, and each HSBN models the world under the hypothesis that the common external hidden variable is in a corresponding one of those states. In accordance with the invention, the MBNs encode the probabilities of observing the sets of acoustic observations given the utterance of a respective one of said parts of speech. Each of the HSBNs encodes the probabilities of observing the sets of acoustic observations given the utterance of a respective one of the parts of speech and given a hidden common variable being in a particular state. Each HSBN has nodes corresponding to the elements of the acoustic observations. These nodes store probability parameters corresponding to the probabilities with causal links representing dependencies between ones of said nodes.
    • 本发明使用贝叶斯网络混合的阵列来执行语音识别。 贝叶斯网络(MBN)的混合由多个具有隐藏和观察变量的假设特定贝叶斯网络(HSBN)组成。 常见的外部隐藏变量与MBN相关联,但不包括在任何HSBN中。 MBN中的HSBN的数量对应于共同外部隐藏变量的状态数,并且每个HSBN在假设下共同的外部隐藏变量处于相应的一个状态的假设下对世界进行建模。 根据本发明,MBN编码了考虑到所述话音部分中的相应一个的话语来观察声学观测组的概率。 每个HSBN编码观察给定语音相应的一个语音的发音并给出隐藏的公共变量处于特定状态的声学观察组的概率。 每个HSBN具有对应于声学观测元素的节点。 这些节点存储对应于概率的概率参数,其中因果链接表示所述节点之间的依赖关系。