会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Mixtures of Bayesian networks
    • 贝叶斯网络的混合
    • US06807537B1
    • 2004-10-19
    • US08985114
    • 1997-12-04
    • Bo ThiessonChristopher A. MeekDavid Maxwell ChickeringDavid Earl Heckerman
    • Bo ThiessonChristopher A. MeekDavid Maxwell ChickeringDavid Earl Heckerman
    • G06N302
    • G06K9/6296G06N5/025Y10S707/99945Y10S707/99948
    • One aspect of the invention is the construction of mixtures of Bayesian networks. Another aspect of the invention is the use of such mixtures of Bayesian networks to perform inferencing. A mixture of Bayesian networks (MBN) consists of plural hypothesis-specific Bayesian networks (HSBNs) having possibly hidden and observed variables. A common external hidden variable is associated with the MBN, but is not included in any of the HSBNs. The number of HSBNs in the MBN corresponds to the number of states of the common external hidden variable, and each HSBN is based upon the hypothesis that the common external hidden variable is in a corresponding one of those states. In one mode of the invention, the MBN having the highest MBN score is selected for use in performing inferencing. In another mode of the invention, some or all of the MBNs are retained as a collection of MBNs which perform inferencing in parallel, their outputs being weighted in accordance with the corresponding MBN scores and the MBN collection output being the weighted sum of all the MBN outputs. In one application of the invention, collaborative filtering may be performed by defining the observed variables to be choices made among a sample of users and the hidden variables to be the preferences of those users.
    • 本发明的一个方面是构建贝叶斯网络的混合物。 本发明的另一方面是使用贝叶斯网络的这种混合来执行推理。 贝叶斯网络(MBN)的混合由多个具有隐藏和观察变量的假设特定贝叶斯网络(HSBN)组成。 常见的外部隐藏变量与MBN相关联,但不包括在任何HSBN中。 MBN中的HSBN的数量对应于公共外部隐藏变量的状态数,并且每个HSBN基于公共外部隐藏变量在这些状态中的相应一个状态中的假设。 在本发明的一种模式中,选择具有最高MBN分数的MBN用于执行推定。 在本发明的另一模式中,一些或所有MBN被保留为并行执行推论的MBN的集合,其输出根据相应的MBN分数加权,并且MBN收集输出是所有MBN的加权和 输出。 在本发明的一个应用中,可以通过将观察到的变量定义为在用户样本中作出的选择和作为这些用户的偏好的隐藏变量来执行协同过滤。
    • 4. 发明授权
    • Clustering with mixtures of bayesian networks
    • 聚类与贝叶斯网络的混合
    • US06345265B1
    • 2002-02-05
    • US09220192
    • 1998-12-23
    • Bo ThiessonChristopher A. MeekDavid Maxwell ChickeringDavid Earl Heckerman
    • Bo ThiessonChristopher A. MeekDavid Maxwell ChickeringDavid Earl Heckerman
    • G06N302
    • G06K9/6296G06N5/025Y10S707/99945Y10S707/99948
    • The invention employs mixtures of Bayesian networks to perform clustering. A mixture of Bayesian networks (MBN) consists of plural hypothesis-specific Bayesian networks (HSBNs) having possibly hidden and observed variables. A common external hidden variable is associated with the MBN, but is not included in any of the HSBNs. The number of HSBNs in the MBN corresponds to the number of states of the common external hidden variable, and each HSBN is based upon the hypothesis that the common external hidden variable is in a corresponding one of those states. In one mode of the invention, the MBN having the highest MBN score is selected for use in performing inferencing. The invention determines membership of an individual case in a cluster based upon a set of data of plural individual cases by first learning the structure and parameters of an MBN given that data and then using the MBN to compute the probability of each HSBN generating the data of the individual case.
    • 本发明采用贝叶斯网络的混合来执行聚类。 贝叶斯网络(MBN)的混合由多个具有隐藏和观察变量的假设特定贝叶斯网络(HSBN)组成。 常见的外部隐藏变量与MBN相关联,但不包括在任何HSBN中。 MBN中的HSBN的数量对应于公共外部隐藏变量的状态数,并且每个HSBN基于公共外部隐藏变量在这些状态中的相应一个状态中的假设。 在本发明的一种模式中,选择具有最高MBN分数的MBN用于执行推定。 本发明通过首先学习给定该数据的MBN的结构和参数,然后使用MBN来计算生成数据的每个HSBN的概率,从而基于多个单独情况的一组数据来确定集群中的个别情况的成员资格 个别情况。
    • 5. 发明授权
    • Collaborative filtering with mixtures of bayesian networks
    • 使用贝叶斯网络混合进行协同过滤
    • US06496816B1
    • 2002-12-17
    • US09220199
    • 1998-12-23
    • Bo ThiessonChristopher A. MeekDavid Maxwell ChickeringDavid Earl Heckerman
    • Bo ThiessonChristopher A. MeekDavid Maxwell ChickeringDavid Earl Heckerman
    • G06N302
    • G06K9/6296G06N5/025Y10S707/99945Y10S707/99948
    • One aspect of the invention is the construction of mixtures of Bayesian networks. Another aspect of the invention is the use of such mixtures of Bayesian networks to perform inferencing. A mixture of Bayesian networks (MBN) consists of plural hypothesis-specific Bayesian networks (HSBNs) having possibly hidden and observed variables. A common external hidden variable is associated with the MBN, but is not included in any of the HSBNs. The number of HSBNs in the MBN corresponds to the number of states of the common external hidden variable, and each HSBN is based upon the hypothesis that the common external hidden variable is in a corresponding one of those states. In one mode of the invention, the MBN having the highest MBN score is selected for use in performing inferencing. In another mode of the invention, some or all of the MBNs are retained as a collection of MBNs which perform inferencing in parallel, their outputs being weighted in accordance with the corresponding MBN scores and the MBN collection output being the weighted sum of all the MBN outputs. In one application of the invention, collaborative filtering may be performed by defining the observed variables to be choices made among a sample of users and the hidden variables to be the preferences of those users.
    • 本发明的一个方面是构建贝叶斯网络的混合物。 本发明的另一方面是使用贝叶斯网络的这种混合来执行推理。 贝叶斯网络(MBN)的混合由多个具有隐藏和观察变量的假设特定贝叶斯网络(HSBN)组成。 常见的外部隐藏变量与MBN相关联,但不包括在任何HSBN中。 MBN中的HSBN的数量对应于公共外部隐藏变量的状态数,并且每个HSBN基于公共外部隐藏变量在这些状态中的相应一个状态中的假设。 在本发明的一种模式中,选择具有最高MBN分数的MBN用于执行推定。 在本发明的另一模式中,一些或所有MBN被保留为并行执行推论的MBN的集合,其输出根据相应的MBN分数加权,并且MBN收集输出是所有MBN的加权和 输出。 在本发明的一个应用中,可以通过将观察到的变量定义为在用户样本中作出的选择和作为这些用户的偏好的隐藏变量来执行协同过滤。
    • 7. 发明授权
    • Speech recognition with mixtures of bayesian networks
    • 语音识别与贝叶斯网络的混合
    • US06336108B1
    • 2002-01-01
    • US09220197
    • 1998-12-23
    • Bo ThiessonChristopher A. MeekDavid Maxwell ChickeringDavid Earl HeckermanFileno A. AllevaMei-Yuh Hwang
    • Bo ThiessonChristopher A. MeekDavid Maxwell ChickeringDavid Earl HeckermanFileno A. AllevaMei-Yuh Hwang
    • G06F1518
    • G06K9/6296G06N5/025Y10S707/99945Y10S707/99948
    • The invention performs speech recognition using an array of mixtures of Bayesian networks. A mixture of Bayesian networks (MBN) consists of plural hypothesis-specific Bayesian networks (HSBNs) having possibly hidden and observed variables. A common external hidden variable is associated with the MBN, but is not included in any of the HSBNs. The number of HSBNs in the MBN corresponds to the number of states of the common external hidden variable, and each HSBN models the world under the hypothesis that the common external hidden variable is in a corresponding one of those states. In accordance with the invention, the MBNs encode the probabilities of observing the sets of acoustic observations given the utterance of a respective one of said parts of speech. Each of the HSBNs encodes the probabilities of observing the sets of acoustic observations given the utterance of a respective one of the parts of speech and given a hidden common variable being in a particular state. Each HSBN has nodes corresponding to the elements of the acoustic observations. These nodes store probability parameters corresponding to the probabilities with causal links representing dependencies between ones of said nodes.
    • 本发明使用贝叶斯网络混合的阵列来执行语音识别。 贝叶斯网络(MBN)的混合由多个具有隐藏和观察变量的假设特定贝叶斯网络(HSBN)组成。 常见的外部隐藏变量与MBN相关联,但不包括在任何HSBN中。 MBN中的HSBN的数量对应于共同外部隐藏变量的状态数,并且每个HSBN在假设下共同的外部隐藏变量处于相应的一个状态的假设下对世界进行建模。 根据本发明,MBN编码了考虑到所述话音部分中的相应一个的话语来观察声学观测组的概率。 每个HSBN编码观察给定语音相应的一个语音的发音并给出隐藏的公共变量处于特定状态的声学观察组的概率。 每个HSBN具有对应于声学观测元素的节点。 这些节点存储对应于概率的概率参数,其中因果链接表示所述节点之间的依赖关系。
    • 8. 发明授权
    • Mixtures of bayesian networks with decision graphs
    • 贝叶斯网络与决策图的混合
    • US06408290B1
    • 2002-06-18
    • US09220200
    • 1998-12-23
    • Bo ThiessonChristopher A. MeekDavid Maxwell ChickeringDavid Earl Heckerman
    • Bo ThiessonChristopher A. MeekDavid Maxwell ChickeringDavid Earl Heckerman
    • G06N302
    • G06K9/6296G06N5/025Y10S707/99945Y10S707/99948
    • One aspect of the invention is the construction of mixtures of Bayesian networks. Another aspect of the invention is the use of such mixtures of Bayesian networks to perform inferencing. A mixture of Bayesian networks (MBN) consists of plural hypothesis-specific Bayesian networks (HSBNs) having possibly hidden and observed variables. A common external hidden variable is associated with the MBN, but is not included in any of the HSBNs. The number of HSBNs in the MBN corresponds to the number of states of the common external hidden variable, and each HSBN is based upon the hypothesis that the common external hidden variable is in a corresponding one of those states. In one mode of the invention, the MBN having the highest MBN score is selected for use in performing inferencing. In another mode of the invention, some or all of the MBNs are retained as a collection of MBNs which perform inferencing in parallel, their outputs being weighted in accordance with the corresponding MBN scores and the MBN collection output being the weighted sum of all the MBN outputs. In one application of the invention, collaborative filtering may be performed by defining the observed variables to be choices made among a sample of users and the hidden variables to be the preferences of those users.
    • 本发明的一个方面是构建贝叶斯网络的混合物。 本发明的另一方面是使用贝叶斯网络的这种混合来执行推理。 贝叶斯网络(MBN)的混合由多个具有隐藏和观察变量的假设特定贝叶斯网络(HSBN)组成。 常见的外部隐藏变量与MBN相关联,但不包括在任何HSBN中。 MBN中的HSBN的数量对应于公共外部隐藏变量的状态数,并且每个HSBN基于公共外部隐藏变量在这些状态中的相应一个状态中的假设。 在本发明的一种模式中,选择具有最高MBN分数的MBN用于执行推定。 在本发明的另一模式中,一些或所有MBN被保留为并行执行推论的MBN的集合,其输出根据相应的MBN分数加权,并且MBN收集输出是所有MBN的加权和 输出。 在本发明的一个应用中,可以通过将观察到的变量定义为在用户样本中作出的选择和作为这些用户的偏好的隐藏变量来执行协同过滤。
    • 10. 发明授权
    • Trees of classifiers for detecting email spam
    • 用于检测电子邮件垃圾邮件的分类树
    • US07930353B2
    • 2011-04-19
    • US11193691
    • 2005-07-29
    • David M. ChickeringGeoffrey J. HultenRobert L. RounthwaiteChristopher A. MeekDavid E. HeckermanJoshua T. Goodman
    • David M. ChickeringGeoffrey J. HultenRobert L. RounthwaiteChristopher A. MeekDavid E. HeckermanJoshua T. Goodman
    • G06F15/16
    • H04L51/12
    • Decision trees populated with classifier models are leveraged to provide enhanced spam detection utilizing separate email classifiers for each feature of an email. This provides a higher probability of spam detection through tailoring of each classifier model to facilitate in more accurately determining spam on a feature-by-feature basis. Classifiers can be constructed based on linear models such as, for example, logistic-regression models and/or support vector machines (SVM) and the like. The classifiers can also be constructed based on decision trees. “Compound features” based on internal and/or external nodes of a decision tree can be utilized to provide linear classifier models as well. Smoothing of the spam detection results can be achieved by utilizing classifier models from other nodes within the decision tree if training data is sparse. This forms a base model for branches of a decision tree that may not have received substantial training data.
    • 利用分类器模型填充的决策树利用电子邮件的每个功能使用单独的电子邮件分类器来提供增强的垃圾邮件检测。 这通过定制每个分类器模型提供了更高的垃圾邮件检测的概率,以便于在逐个特征的基础上更准确地确定垃圾邮件。 分类器可以基于诸如逻辑回归模型和/或支持向量机(SVM)等线性模型来构建。 分类器也可以基于决策树构建。 基于决策树的内部和/或外部节点的“复合特征”也可以用于提供线性分类器模型。 垃圾邮件检测结果的平滑可以通过使用来自决策树内的其他节点的分类器模型来实现,如果训练数据是稀疏的。 这形成了可能没有接收到大量训练数据的决策树的分支的基本模型。