会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Method for preparing ultraflat, atomically perfect areas on large regions of a crystal surface by heteroepitaxy deposition
    • 通过异质外延沉积在晶体表面的大区域上制备超平坦,原子完美区域的方法
    • US08398872B2
    • 2013-03-19
    • US12921562
    • 2009-03-10
    • Farid El GabalyAndreas K. Schmid
    • Farid El GabalyAndreas K. Schmid
    • B44C1/22
    • C30B23/063C30B29/02C30B33/12
    • A novel method of forming large atomically flat areas is described in which a crystalline substrate having a stepped surface is exposed to a vapor of another material to deposit a material onto the substrate, which material under appropriate conditions self arranges to form 3D islands across the substrate surface. These islands are atomically flat at their top surface, and conform to the stepped surface of the substrate below at the island-substrate interface. Thereafter, the deposited materials are etched away, in the etch process the atomically flat surface areas of the islands transferred to the underlying substrate. Thereafter the substrate may be cleaned and annealed to remove any remaining unwanted contaminants, and eliminate any residual defects that may have remained in the substrate surface as a result of pre-existing imperfections of the substrate.
    • 描述了形成大的原子平坦区域的新颖方法,其中具有台阶表面的晶体衬底暴露于另一材料的蒸气以将材料沉积到衬底上,该材料在适当条件下自行布置以在衬底上形成3D岛 表面。 这些岛在其顶表面处原子平坦,并且在岛 - 基底界面处与基底的阶梯表面相符。 此后,沉积的材料被蚀刻掉,在蚀刻过程中,岛的原子平坦表面区域转移到下面的衬底。 此后,基板可以被清洁和退火以除去任何残留的不需要的污染物,并且由于基板的预先存在的缺陷,消除了可能残留在基板表面中的任何残留缺陷。
    • 5. 发明授权
    • Gas sensor
    • 气体传感器
    • US08826726B2
    • 2014-09-09
    • US13318522
    • 2010-04-29
    • Andreas K. SchmidArantzazu MascaraqueBenito SantosJuan de la Figuera
    • Andreas K. SchmidArantzazu MascaraqueBenito SantosJuan de la Figuera
    • G01R33/00G01N27/72G01N27/74
    • G01N27/74
    • A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.
    • 描述了一种气体传感器,其包括传感器堆叠,该传感器堆叠包括铁磁材料的第一膜层,间隔层和铁磁材料的第二膜层。 制造第一膜层,使得其表现出其磁各向异性方向对气体存在的依赖性,即,当气体的磁化强度的方向从外部平面翻转到平面时 被检测的浓度以足够的浓度存在。 通过监测传感器堆的电阻变化,当第一层磁化的取向发生变化时,并将该变化与温度相关联可以确定检测到的气体的同一性和相对浓度。 在一个实施例中,堆叠传感器包括沉积在钌间隔层上的两层单层厚度的钴的顶部铁磁层,其又具有设置在其另一侧上的第二层钴,该第二钴层与可编程加热器 芯片。
    • 6. 发明申请
    • Gas Sensor
    • 气体传感器
    • US20120131988A1
    • 2012-05-31
    • US13318522
    • 2010-04-29
    • Andreas K. SchmidArantzazu MascaraqueBenito SantosJuan de la Figuera
    • Andreas K. SchmidArantzazu MascaraqueBenito SantosJuan de la Figuera
    • G01N27/74
    • G01N27/74
    • A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.
    • 描述了一种气体传感器,其包括传感器堆叠,该传感器堆叠包括铁磁材料的第一膜层,间隔层和铁磁材料的第二膜层。 制造第一膜层,使得其表现出其磁各向异性方向对气体存在的依赖性,即,当气体的磁化强度的方向从外部平面翻转到平面时 被检测的浓度以足够的浓度存在。 通过监测传感器堆的电阻变化,当第一层磁化的取向发生变化时,并将该变化与温度相关联可以确定检测到的气体的同一性和相对浓度。 在一个实施例中,堆叠传感器包括沉积在钌间隔层上的两层单层厚度的钴的顶部铁磁层,其又具有设置在其另一侧上的第二层钴,该第二钴层与可编程加热器 芯片。
    • 7. 发明申请
    • METHOD FOR PREPARING ULTRAFLAT, ATOMICALLY PERFECT AREAS ON LARGE REGIONS OF A CRYSTAL SURFACE BY HETEROEPITAXY DEPOSITION
    • 用于制备超临界的方法,通过异位沉积形成晶体表面的大面积的原始完整区域
    • US20110042351A1
    • 2011-02-24
    • US12921562
    • 2009-03-10
    • Farid El GabalyAndreas K. Schmid
    • Farid El GabalyAndreas K. Schmid
    • B05D3/10
    • C30B23/063C30B29/02C30B33/12
    • A novel method of forming large atomically flat areas is described in which a crystalline substrate having a stepped surface is exposed to a vapor of another material to deposit a material onto the substrate, which material under appropriate conditions self arranges to form 3D islands across the substrate surface. These islands are atomically flat at their top surface, and conform to the stepped surface of the substrate below at the island-substrate interface. Thereafter, the deposited materials are etched away, in the etch process the atomically flat surface areas of the islands transferred to the underlying substrate. Thereafter the substrate may be cleaned and annealed to remove any remaining unwanted contaminants, and eliminate any residual defects that may have remained in the substrate surface as a result of pre-existing imperfections of the substrate.
    • 描述了形成大的原子平坦区域的新颖方法,其中具有台阶表面的晶体衬底暴露于另一材料的蒸气以将材料沉积到衬底上,该材料在适当条件下自行布置以在衬底上形成3D岛 表面。 这些岛在其顶表面处原子平坦,并且在岛 - 基底界面处与基底的阶梯表面相符。 此后,沉积的材料被蚀刻掉,在蚀刻过程中,岛的原子平坦表面区域转移到下面的衬底。 此后,基板可以被清洁和退火以除去任何残留的不需要的污染物,并且由于基板的预先存在的缺陷,消除了可能残留在基板表面中的任何残留缺陷。