会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Machine language translation with transfer mappings having varying context
    • 机器语言翻译与转移映射具有不同的上下文
    • US08275605B2
    • 2012-09-25
    • US12773328
    • 2010-05-04
    • Arul A. MenezesStephen D. Richardson
    • Arul A. MenezesStephen D. Richardson
    • G06F17/28
    • G06F17/2827
    • A computer-implemented machine translation system translates text from a first language to a second language. The system includes a plurality of mappings, each mapping indicative of associating a dependency structure of the first language with a dependency structure of the second language, wherein at least some of the mappings correspond to dependency structures of the first language having varying context with some common elements, and associated dependency structures of the second language to the dependency structures of the first language. A module receives input text in a first language and outputs output text in a second language based on accessing the plurality of mappings.
    • 计算机实现的机器翻译系统将文本从第一语言翻译成第二语言。 该系统包括多个映射,每个映射指示将第一语言的依赖结构与第二语言的依赖结构相关联,其中至少一些映射对应于具有不同上下文的第一语言的依赖结构,具有一些常见的 元素和第二语言的关联依赖结构与第一语言的依赖结构。 模块以第一语言接收输入文本,并且基于访问多个映射以第二语言输出输出文本。
    • 7. 发明授权
    • Information retrieval utilizing semantic representation of text by
identifying hypernyms and indexing multiple tokenized semantic
structures to a same passage of text
    • 信息检索利用文本的语义表示,通过识别多义词,并将多个标记语义结构索引到同一段文本
    • US6161084A
    • 2000-12-12
    • US366499
    • 1999-08-03
    • John J. MesserlyGeorge E. HeidornStephen D. RichardsonWilliam B. DolanKaren Jensen
    • John J. MesserlyGeorge E. HeidornStephen D. RichardsonWilliam B. DolanKaren Jensen
    • G06F17/27G06F17/30
    • G06F17/30684G06F17/271G06F17/277G06F17/2785Y10S707/99932Y10S707/99935
    • The present invention is directed to performing information retrieval utilizing semantic representation of text. In a preferred embodiment, a tokenizer generates from an input string information retrieval tokens that characterize the semantic relationship expressed in the input string. The tokenizer first creates from the input string a primary logical form characterizing a semantic relationship between selected words in the input string. The tokenizer then identifies hypernyms that each have an "is a" relationship with one of the selected words in the input string. The tokenizer then constructs from the primary logical form one or more alternative logical forms. The tokenizer constructs each alternative logical form by, for each of one or more of the selected words in the input string, replacing the selected word in the primary logical form with an identified hypernym of the selected word. Finally, the tokenizer generates tokens representing both the primary logical form and the alternative logical forms. The tokenizer is preferably used to generate tokens for both constructing an index representing target documents and processing a query against that index.
    • 本发明旨在利用文本的语义表示来执行信息检索。 在优选实施例中,标记器从输入字符串生成表征输入字符串中表达的语义关系的信息检索令牌。 标记器首先从输入字符串创建表示输入字符串中所选择的单词之间的语义关系的主逻辑形式。 然后,标记器识别每个与输入字符串中所选择的一个字符之间具有“是”关系的超文本。 然后,标记器从主逻辑形式构造一个或多个替代的逻辑形式。 令牌化器通过输入字符串中的一个或多个所选择的单词中的每个替换逻辑形式来构造每个备选逻辑形式,用所选择的单词的所识别的超级词替换主逻辑形式中的所选择的单词。 最后,tokenizer生成表示主逻辑表单和替代逻辑表单的令牌。 令牌化器优选地用于生成用于构建表示目标文档的索引并针对该索引处理查询的令牌。
    • 8. 发明授权
    • Determining similarity between words
    • 确定单词之间的相似性
    • US6098033A
    • 2000-08-01
    • US904223
    • 1997-07-31
    • Stephen D. RichardsonWilliam B. Dolan
    • Stephen D. RichardsonWilliam B. Dolan
    • G06F17/27
    • G06F17/277G06F17/2785
    • The present invention provides a facility for determining similarity between two input words utilizing the frequencies with which path patterns occurring between the words occur between words known to be synonyms. A preferred embodiment of the facility utilizes a training phase and a similarity determination phase. In the training phase, the facility first identifies, for a number of pairs of synonyms, the most salient semantic relation paths between each pair of synonyms. The facility then extracts from these semantic relation paths their path patterns, which each comprise a series of directional relation types. The number of times that each path pattern occurs between pairs of synonyms, called the frequency of the path pattern, is counted. In the training phase, the facility identifies the most salient semantic relation paths between the input words, and extracts their path patterns. The facility then averages the frequencies counted in the training phase for the path patterns extracted for the input words in order to obtain a quantitative measure of the similarity between the input words.
    • 本发明提供了一种用于确定两个输入词之间的相似性的设施,该两个输入字利用在已知是同义词的单词之间出现的词之间出现的路径模式的频率。 设施的优选实施例利用训练阶段和相似性确定阶段。 在训练阶段,设施首先识别多对同义词,即每对同义词之间最突出的语义关系路径。 然后,该设施从这些语义关系路径中提取它们的路径模式,每个路径模式包括一系列方向关系类型。 计算每个路径模式发生在同义词对之间的次数,称为路径模式的频率。 在训练阶段,设备识别输入单词之间最突出的语义关系路径,并提取其路径模式。 然后,该设施对为训练阶段计数的针对输入词提取的路径模式的频率进行平均,以便获得输入单词之间的相似性的定量测量。
    • 10. 发明授权
    • Adaptive machine translation
    • 自适应机器翻译
    • US07295963B2
    • 2007-11-13
    • US10626925
    • 2003-07-25
    • Stephen D. RichardsonRichard F. Rashid
    • Stephen D. RichardsonRichard F. Rashid
    • G06F17/28
    • G06F17/2836
    • A computer-implemented method for providing information to an automatic machine translation system to improve translation accuracy is disclosed. The method includes receiving a collection of source text. An attempted translation that corresponds to the collection of source text is received from the automatic machine translation system. A correction input, which is configured to effectuate a correction of at least one error in the attempted translation, is also received. Finally, information is provided to the automatic machine translation system to reduce the likelihood that the error will be repeated in subsequent translations generated by the automatic machine translation system.
    • 公开了一种用于向自动机器翻译系统提供信息以提高翻译精度的计算机实现的方法。 该方法包括接收源文本的集合。 从自动机器翻译系统接收到对应于源文本集合的尝试翻译。 被配置为实现尝试翻译中的至少一个错误的校正的校正输入也被接收。 最后,将信息提供给自动机器翻译系统,以减少由自动机器翻译系统产生的后续翻译中将重复错误的可能性。