会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • In-situ synthesis of carbon nanotubes filled with metallic nanoparticles using arc discharge in solution
    • 在溶液中使用电弧放电填充金属纳米粒子的碳纳米管的原位合成
    • US07968072B2
    • 2011-06-28
    • US12229683
    • 2008-08-26
    • Sudipta SealDebasis BeraSuresh C. KuiryMeyya MeyyappanMatthew Luke McCutchen
    • Sudipta SealDebasis BeraSuresh C. KuiryMeyya MeyyappanMatthew Luke McCutchen
    • B82B3/00
    • B82Y40/00B82Y30/00C01B32/16C01B2202/02C01B2202/06C01B2202/36Y10S977/846
    • A novel method for simultaneously forming and filling and decorating carbon nanotubes with palladium nanoparticles is disclosed. Synthesis involves preparing a palladium chloride (PdCl2) solution in a container, having two graphite electrodes, then immersing the graphite electrode assembly, into the PdCl2 solution; connecting the graphite electrodes to a direct current power supply; bringing the electrodes into contact with each other to strike an arc; separating the electrodes to sustain the arc inside the solution; putting the container with electrode assembly in a water-cooled bath; and collecting Pd-nanoparticles encapsulated in carbon nanotubes and carbon nanotubes decorated with Pd-nanoparticles. The temperature at the site of the arc-discharge is greater than 3000° C. At these temperatures, the palladium is ionized into nanoparticles and the graphite electrodes generate layers of graphene (carbon), which roll away from the anode and encapsulate or entrap the Pd-nanoparticles. The unique nanotube structures have significant commercial potential as gas sensors or as a means for hydrogen storage.
    • 公开了一种用钯纳米颗粒同时形成和填充和装饰碳纳米管的新方法。 合成包括在容器中制备氯化钯(PdCl 2)溶液,其具有两个石墨电极,然后将石墨电极组件浸入PdCl 2溶液中; 将石墨电极连接到直流电源; 使电极彼此接触以产生电弧; 分离电极以维持溶液内的电弧; 将容器与电极组件放在水冷浴中; 并收集封装在碳纳米管中的Pd-纳米颗粒和用Pd-纳米颗粒装饰的碳纳米管。 电弧放电现场的温度大于3000℃。在这些温度下,钯离子化成纳米颗粒,石墨电极产生石墨烯层(碳),其从阳极卷起并封闭或截留 钯纳米粒子。 独特的纳米管结构作为气体传感器或作为氢存储的手段具有显着的商业潜力。
    • 5. 发明授权
    • Real time oil reservoir evaluation using nanotechnology
    • 实时油藏评估采用纳米技术
    • US07875455B1
    • 2011-01-25
    • US11489803
    • 2006-07-12
    • Jing LiMeyya Meyyappan
    • Jing LiMeyya Meyyappan
    • G01N33/24G01N27/06G01N25/00G01N7/00G01N27/04
    • G01V9/00E21B47/06E21B47/10Y10S977/957
    • A method and system for evaluating status and response of a mineral-producing field (e.g., oil and/or gas) by monitoring selected chemical and physical properties in or adjacent to a wellsite headspace. Nanotechnology sensors and other sensors are provided for one or more underground (fluid) mineral-producing wellsites to determine presence/absence of each of two or more target molecules in the fluid, relative humidity, temperature and/or fluid pressure adjacent to the wellsite and flow direction and flow velocity for the fluid. A nanosensor measures an electrical parameter value and estimates a corresponding environmental parameter value, such as water content or hydrocarbon content. The system is small enough to be located down-hole in each mineral-producing horizon for the wellsite.
    • 通过监测井场顶部空间中或附近的选定化学和物理性质来评估矿物生产场(例如油和/或气)的状态和响应的方法和系统。 提供用于一个或多个地下(流体)矿物生产井眼的纳米技术传感器和其他传感器,以确定在井眼相邻的流体,相对湿度,温度和/或流体压力中的两个或更多个目标分子中的每一个的存在/不存在,以及 流体的流动方向和流速。 纳米传感器测量电参数值并估计相应的环境参数值,例如含水量或碳氢化合物含量。 该系统足够小,可以在井场的每个矿产地层中位于井下。
    • 6. 发明授权
    • Chemical sensors using coated or doped carbon nanotube networks
    • 使用涂覆或掺杂碳纳米管网络的化学传感器
    • US07801687B1
    • 2010-09-21
    • US11178079
    • 2005-07-08
    • Jing LiMeyya Meyyappan
    • Jing LiMeyya Meyyappan
    • G01N31/00
    • G01N27/127Y10S977/92Y10S977/921Y10S977/922Y10S977/938
    • Methods for using modified single wall carbon nanotubes (“SWCNTs”) to detect presence and/or concentration of a gas component, such as a halogen (e.g., Cl2), hydrogen halides (e.g., HCl), a hydrocarbon (e.g., CnH2n+2), an alcohol, an aldehyde or a ketone, to which an unmodified SWCNT is substantially non-reactive. In a first embodiment, a connected network of SWCNTs is coated with a selected polymer, such as chlorosulfonated polyethylene, hydroxypropyl cellulose, polystyrene and/or polyvinylalcohol, and change in an electrical parameter or response value (e.g., conductance, current, voltage difference or resistance) of the coated versus uncoated SWCNT networks is analyzed. In a second embodiment, the network is doped with a transition element, such as Pd, Pt, Rh, Ir, Ru, Os and/or Au, and change in an electrical parameter value is again analyzed. The parameter change value depends monotonically, not necessarily linearly, upon concentration of the gas component. Two general algorithms are presented for estimating concentration value(s), or upper or lower concentration bounds on such values, from measured differences of response values.
    • 使用改性单壁碳纳米管(“SWCNT”)检测气体组分如卤素(例如Cl 2),卤化氢(例如HCl),烃(例如CnH2n +)的存在和/或浓度的方法, 2),醇,醛或酮,未改性的SWCNT基本上不反应。 在第一实施例中,SWCNT的连接网络被涂覆有所选择的聚合物,例如氯磺化聚乙烯,羟丙基纤维素,聚苯乙烯和/或聚乙烯醇,并且改变电参数或响应值(例如,电导率,电流,电压差或 电阻)的涂层与未涂层的SWCNT网络进行了分析。 在第二实施例中,网络掺杂有诸如Pd,Pt,Rh,Ir,Ru,Os和/或Au的过渡元素,并再次分析电参数值的变化。 当气体组分浓度时,参数变化值单调地取决于不一定是线性的。 提供两种通用算法,用于根据测量的响应值差异来估计浓度值,或者这些值的上限或下限浓度范围。
    • 8. 发明授权
    • Selective functionalization of carbon nanotubes based upon distance traveled
    • 基于行进距离的碳纳米管的选择性官能化
    • US07767270B1
    • 2010-08-03
    • US11387503
    • 2006-03-22
    • Bishun N. KhareMeyya Meyyappan
    • Bishun N. KhareMeyya Meyyappan
    • H05H1/24
    • B82Y40/00B82Y30/00C01B32/174Y10S427/102
    • Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or NH3 or NF3 or F2 or CF4 or CnHm) is irradiated to provide a cold plasma of selected target particles, such as atomic H or F, in a first chamber. The target particles are directed toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec. The predominant species that are deposited on the CNT array vary with the distance d measured along a path from the precursor gas to the CNT array; two or three different predominant species can be deposited on a CNT array for distances d=d1 and d=d2>d1 and d=d3>d2.
    • 用于功能化碳纳米管(CNT)集合的方法和系统。 照射所选择的前体气体(例如,H2或NH3或NF3或F2或CF4或CnHm)以在第一室中提供所选择的靶颗粒(例如原子H或F)的冷等离子体。 目标颗粒指向位于第二室中的CNT阵列,同时抑制紫外线辐射传送到第二室。 在不超过约30秒的曝光时间间隔内,CNT阵列在目标颗粒处于或低于室温下功能化到饱和点。 沉积在CNT阵列上的主要物种随着沿着从前体气体到CNT阵列的路径测量的距离d而变化; 两个或三个不同的主要物种可以沉积在CNT阵列上以达到距离d = d1和d = d2> d1和d = d3> d2。
    • 9. 发明授权
    • Fabrication of nanopipette arrays for biosensing
    • 制作用于生物传感的纳米片剂阵列
    • US09182394B1
    • 2015-11-10
    • US13480917
    • 2012-05-25
    • Meyya Meyyappan
    • Meyya Meyyappan
    • G01N33/566G01N33/543
    • G01N27/3278G01N33/54386
    • Method for providing a nanopipette array for biosensing applications. A thin substrate of anodizable metal (“AN-metal,” such as Al, Mg, Zn, Ti, Ta and/or Nb) is anodized at temperature T=20-200° C., chemical bath pH=4-6 and electrical potential 1-300 Volts, to produce an array of anodized nanopipette channels, having diameters 10-50 nm, with oxidized channel surfaces of thickness 5-20 nm. A portion of exposed non-oxidized AN-metal between adjacent nanopipette channels, of length 1-5 μm, is etched away, exposing inner and outer surfaces of a nanopipette channel. A probe molecule, is deposited on one or both surfaces to provide biosensing capability for K(≧1) target molecules. Target molecule presence, in an above-threshold concentration, in a fluid passed through or adjacent to a nanopipette channel, produces characteristic detection signals associated with the probe molecule site.
    • 提供用于生物传感应用的纳米微管阵列的方法。 在T = 20-200℃,化学浴pH = 4-6的条件下对阳极氧化金属(“AN金属”,如Al,Mg,Zn,Ti,Ta和/或Nb)的薄基板进行阳极氧化处理 电位1-300伏,以产生具有10-50nm直径的阳极氧化纳米管通道阵列,具有厚度5-20nm的氧化通道表面。 在距离为1-5μm的相邻纳米管通道之间暴露的未氧化的AN金属的一部分被蚀刻掉,暴露了纳米管通道的内表面和外表面。 探针分子沉积在一个或两个表面上,为K(≧1)靶分子提供生物传感能力。 目标分子以超过阈值的浓度存在于通过或邻近纳米药片通道的流体中,产生与探针分子位点相关的特征检测信号。