会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Optical Proximity Correction Structures Having Decoupling Capacitors
    • 具有去耦电容器的光学接近校正结构
    • US06429469B1
    • 2002-08-06
    • US09705031
    • 2000-11-02
    • Archibald J. AllenOrest BulaJohn M. CohnDaniel ColeEdward W. ConradWilliam C. Leipold
    • Archibald J. AllenOrest BulaJohn M. CohnDaniel ColeEdward W. ConradWilliam C. Leipold
    • H01L2710
    • H01L27/0629
    • A structure for a semiconductor chip which includes a first region having first cells for storing and processing data, and a second region outside the first region having OPC structures, wherein the OPC structures comprise decoupling capacitors. The line widths of the active gates of first cells are the same size or similar in size as the OPC structures. The OPC structures reduce proximity effects of active devices in the first cells, and comprise N-type FETs and P-type FETs, that are located in the second region. The OPC structures may have a width greater than the first cells. The second region can be multiple OPC structures, whereby the second region comprises multiple decoupling capacitors. The active devices in the first cells are separated by a first distance and the OPC structures are separated from the active devices by the first distance.
    • 一种用于半导体芯片的结构,其包括具有用于存储和处理数据的第一单元的第一区域,以及具有OPC结构的第一区域之外的第二区域,其中OPC结构包括去耦电容器。 第一单元的有源栅极的线宽与OPC结构尺寸相同或相似。 OPC结构减少了第一单元中的有源器件的邻近效应,并且包括位于第二区域中的N型FET和P型FET。 OPC结构可以具有大于第一单元的宽度。 第二区域可以是多个OPC结构,由此第二区域包括多个去耦电容器。 第一单元中的有源器件被隔开第一距离,并且OPC结构与有源器件分开第一距离。
    • 4. 发明授权
    • Method for prediction random defect yields of integrated circuits with accuracy and computation time controls
    • 用于精确计算时间控制的集成电路预测随机缺陷产量的方法
    • US06738954B1
    • 2004-05-18
    • US09636478
    • 2000-08-10
    • Archibald J. AllenWilm E. DonathAlan D. DziedzicMark A. LavinDaniel N. MaynardDennis M. NewnsGustavo E. Tellez
    • Archibald J. AllenWilm E. DonathAlan D. DziedzicMark A. LavinDaniel N. MaynardDennis M. NewnsGustavo E. Tellez
    • G06F1750
    • H01L22/20G01R31/31705
    • A method of computing a manufacturing yield of an integrated circuit having device shapes includes sub-dividing the integrated circuit into failure mechanism subdivisions (each of the failure mechanism subdivisions includes one or more failure mechanism and each of the failure mechanisms includes one or more defect mechanisms), partitioning the failure mechanism subdivisions by area into partitions, pre-processing the device shapes in each partition, computing an initial average number of faults for each of the failure mechanisms and for each partition by numerical integration of an average probability of failure of each failure mechanism, (the numerical integration produces a list of defect sizes for each defect mechanism, and the computing of the initial average includes setting a maximum integration error limit, a maximum sample size for a population of each defect size, and a maximum number of allowable faults for each failure mechansim), and computing a final average number of faults for the integrated circuit by iterativelly reducing a statistical error of the initial average number of faults for each of the failure mechanisms until the statistical error is below an error limit.
    • 一种计算具有装置形状的集成电路的制造成品率的方法包括将集成电路分为故障机构细分(每个故障机构细分包括一个或多个故障机制,并且每个故障机制包括一个或多个缺陷机构 ),将故障机制细分为每个区域的分区,预处理每个分区中的设备形状,通过对每个分区的每个故障机制和每个分区的平均故障概率的数值积分计算每个故障机制的初始平均故障数 故障机制(数值积分产生每个缺陷机制的缺陷尺寸列表,初始平均值的计算包括设置最大积分误差极限,每个缺陷尺寸的总体最大样本量, 每个故障的可允许故障mechansim),并计算最终的平均数fau 通过迭代地减少每个故障机制的初始平均故障数量的统计误差,直到统计误差低于误差极限为止,用于集成电路。