会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Method of etching tantalum
    • 蚀刻钽的方法
    • US20020132488A1
    • 2002-09-19
    • US09759725
    • 2001-01-12
    • Applied Materials, Inc.
    • Padmapani Nallan
    • H01L021/302H01L021/461
    • C23F4/00H01L21/28123H01L21/32136H01L21/32139
    • A method of plasma etching a patterned tantalum layer or a patterned tantalum nitride layer in a semiconductor structure is disclosed. The method provides an advantageous etch rate while enabling excellent profile control during the patterned etching of the tantalum. The method of etching tantalum employs a plasma source gas comprising an inorganic fluorine-comprising gas, such as NF3 or SF6, in combination with a carbon-containing, fluorine-comprising gas, CxHyFz, where x ranges from 1 to about 4, y ranges from 0 to about 4, and z ranges from 1 to about 6. In some of the preferred embodiments, ynull0 in the CxHyFz formula, so that the carbon-containing, fluorine-comprising gas has the formula CxFy. Examples of such carbon-containing, fluorine-comprising gases include CF4, C2F6, C3F6, C4F6, C4F8, C5F8, and combinations thereof. The inorganic fluorine-comprising gas serves as the primary etchant, in order to provide a high tantalum etch rate (i.e., greater than 1000 null per minute). The carbon-containing, fluorine-comprising gas serves as a secondary etchant, as well as providing sidewall passivation to improve the feature etch profile. By changing the ratio of the inorganic fluorine-comprising gas to the organic fluorine-comprising gas in the plasma source gas, the etch rate and etch profile of the tantalum can be accurately controlled. To achieve best results using the method of the invention, the plasma is preferably a high density plasma having an electron density of at least at least 1011 enull/cm3. In addition, a bias power is applied to the semiconductor substrate to increase the anisotropicity of the etching process.
    • 公开了一种等离子体蚀刻半导体结构中的图案化钽层或图案化氮化钽层的方法。 该方法提供有利的蚀刻速率,同时在钽的图案化蚀刻期间能够实现优异的轮廓控制。 蚀刻钽的方法采用包含无机含氟气体如NF 3或SF 6的等离子体源气体与含碳的含氟气体CxHyFz组合,其中x为1至约4,y范围 0至约4,z在1至约6的范围内。在一些优选实施方案中,C x H y F z式中y = 0,使得含碳的含氟气体具有式C x F y。 这种含碳的含氟气体的实例包括CF 4,C 2 F 6,C 3 F 6,C 4 F 6,C 4 F 8,C 5 F 8及其组合。 无机含氟气体用作初级蚀刻剂,以提供高的钽蚀刻速率(即每分钟大于1000埃)。 含碳的含氟气体用作二次蚀刻剂,以及提供侧壁钝化以改善特征蚀刻轮廓。 通过改变等离子体源气体中的无机含氟气体与有机含氟气体的比例,可以精确地控制钽的蚀刻速率和蚀刻轮廓。 为了使用本发明的方法获得最佳结果,等离子体优选是电子密度至少为1011埃/ cm3的高密度等离子体。 此外,向半导体衬底施加偏置功率以增加蚀刻工艺的各向异性。
    • 2. 发明申请
    • METHOD OF ETCHING A TANTALUM NITRIDE LAYER IN A HIGH DENSITY PLASMA
    • 在高密度等离子体中蚀刻氮化钛层的方法
    • US20020195416A1
    • 2002-12-26
    • US09846580
    • 2001-05-01
    • Applied Materials, Inc.
    • Padmapani Nallan
    • C23F001/00H01L021/302
    • H01L21/32136H01L21/28568
    • A method of plasma etching a patterned tantalum nitride layer, which provides an advantageous etch rate and good profile control. The method employs a plasma source gas comprising a primary etchant to provide a reasonable tantalum etch rate, and a secondary etchant/profile-control additive to improve the etched feature profile. The primary etchant is either a fluorine-comprising or an inorganic chlorine-comprising gas. Where a fluorine-comprising gas is the primary etchant, the profile-control additive is a chlorine-comprising gas. Where the chlorine-comprising gas is the primary etchant, the profile-control additive is an inorganic bromine-comprising gas. By changing the ratio of the primary etchant to the profile-control additive, the etch rate and etch profile of the tantalum nitride can be controlled. For best results, the plasma is preferably a high density plasma (minimum electron density of 1011 cnull/cm3), and a bias power is applied to the semiconductor substrate to increase the etching anisotropy.
    • 等离子体蚀刻图案化氮化钽层的方法,其提供有利的蚀刻速率和良好的轮廓控制。 该方法采用包括初级蚀刻剂的等离子体源气体来提供合理的钽蚀刻速率,以及二次蚀刻剂/轮廓控制添加剂以改善蚀刻的特征轮廓。 初级蚀刻剂是含氟或无机含氯气体。 当含氟气体是主要蚀刻剂时,轮廓控制添加剂是含氯气体。 当含氯气体是主要蚀刻剂时,轮廓控制添加剂是无机溴的气体。 通过改变初级蚀刻剂与轮廓控制添加剂的比例,可以控制氮化钽的蚀刻速率和蚀刻轮廓。 为了获得最佳结果,等离子体优选为高密度等离子体(最小电子密度为1011c / cm 3),并且向半导体衬底施加偏置功率以增加蚀刻各向异性。
    • 3. 发明申请
    • Method of etching tungsten or tungsten nitride electrode gates in semiconductor structures
    • US20020028582A1
    • 2002-03-07
    • US09755522
    • 2001-01-05
    • Applied Materials, Inc.
    • Padmapani NallanHakeem Oluseyi
    • H01L021/302H01L021/461
    • H01L21/32136C23F4/00H01L21/28079H01L21/28088H01L21/28123
    • The present invention relates to a method of etching tungsten or tungsten nitride in semiconductor structures, and particularly to the etching of gate electrodes which require precise control over the etching process. We have discovered a method of etching tungsten or tungsten nitride which permits precise etch profile control while providing excellent selectivity, of at least 175:1, for example, in favor of etching tungsten or tungsten nitride rather than an adjacent oxide layer. Typically, the oxide is selected from silicon oxide, silicon oxynitride, tantalum pentoxide, zirconium oxide, and combinations thereof. The method appears to be applicable to tungsten or tungsten nitride, whether deposited by physical vapor deposition (PVD) or chemical vapor deposition (CVD). In particular, an initial etch chemistry, used during the majority of the tungsten or tungsten nitride etching process (the main etch), employs the use of a plasma source gas where the chemically functional etchant species are generated from a combination of sulfur hexafluoride (SF6) and nitrogen (N2), or in the alternative, from a combination of nitrogen trifluoride (NF3), chlorine (Cl2), and carbon tetrafluoride (CF4). Toward the end of the main etching process, a second chemistry is used in which the chemically functional etchant species are generated from Cl2 and O2. This final portion of the etch process may be referred to as an nulloveretchnull process, since etching is carried out to at least the surface underlying the tungsten or tungsten nitride. However, this second etch chemistry may optionally be divided into two steps, where the plasma source gas oxygen content and plasma source power are increased in the second step.
    • 5. 发明申请
    • Method of etching tantalum
    • 蚀刻钽的方法
    • US20030109138A1
    • 2003-06-12
    • US10340125
    • 2003-01-09
    • Applied Materials, Inc.
    • Padmapani Nallan
    • H01L021/302H01L021/461
    • C23F4/00H01L21/28123H01L21/32136H01L21/32139
    • A method of plasma etching a patterned tantalum layer or a patterned tantalum nitride layer in a semiconductor structure is disclosed. The method provides an advantageous etch rate while enabling excellent profile control during the patterned etching of the tantalum. The method of etching tantalum employs a plasma source gas comprising an inorganic fluorine-comprising gas, such as NF3 or SF6, in combination with a carbon-containing, fluorine-comprising gas, CxHyFz, where x ranges from 1 to about 4, y ranges from 0 to about 4, and z ranges from 1 to about 6. In some of the preferred embodiments, ynull0 in the CxHyFz formula, so that the carbon-containing, fluorine-comprising gas has the formula CxFy. Examples of such carbon-containing, fluorine-comprising gases include CF4, C2F6, C3F6, C4F6, C4F8, C5F8, and combinations thereof. The inorganic fluorine-comprising gas serves as the primary etchant, in order to provide a high tantalum etch rate (i.e., greater than 1000 null per minute). The carbon-containing, fluorine-comprising gas serves as a secondary etchant, as well as providing sidewall passivation to improve the feature etch profile. By changing the ratio of the inorganic fluorine-comprising gas to the organic fluorine-comprising gas in the plasma source gas, the etch rate and etch profile of the tantalum can be accurately controlled. To achieve best results using the method of the invention, the plasma is preferably a high density plasma having an electron density of at least at least 1011 enullcm3. In addition, a bias power is applied to the semiconductor substrate to increase the anisotropicity of the etching process.
    • 公开了一种等离子体蚀刻半导体结构中的图案化钽层或图案化氮化钽层的方法。 该方法提供有利的蚀刻速率,同时在钽的图案化蚀刻期间能够实现优异的轮廓控制。 蚀刻钽的方法采用包含无机含氟气体如NF 3或SF 6的等离子体源气体与含碳的含氟气体CxHyFz组合,其中x为1至约4,y范围 0至约4,z在1至约6的范围内。在一些优选实施方案中,C x H y F z式中y = 0,使得含碳的含氟气体具有式C x F y。 这种含碳的含氟气体的实例包括CF 4,C 2 F 6,C 3 F 6,C 4 F 6,C 4 F 8,C 5 F 8及其组合。 无机含氟气体用作初级蚀刻剂,以提供高的钽蚀刻速率(即每分钟大于1000埃)。 含碳的含氟气体用作二次蚀刻剂,以及提供侧壁钝化以改善特征蚀刻轮廓。 通过改变等离子体源气体中的无机含氟气体与有机含氟气体的比例,可以精确地控制钽的蚀刻速率和蚀刻轮廓。 为了使用本发明的方法获得最佳结果,等离子体优选是具有至少1011e-cm 3的电子密度的高密度等离子体。 此外,向半导体衬底施加偏置功率以增加蚀刻工艺的各向异性。
    • 8. 发明申请
    • TECHNIQUES FOR PLASMA ETCHING SILICON-GERMANIUM
    • 等离子体蚀刻硅锗的技术
    • US20030176075A1
    • 2003-09-18
    • US10093050
    • 2002-03-06
    • Applied Materials, Inc.
    • Anisul KhanAjay KumarPadmapani Nallan
    • H01L021/4763
    • H01L21/3065G02B6/136
    • The present invention provides novel etching techniques for etching SinullGe, employing SF6/fluorocarbon etch chemistries at a low bias power. These plasma conditions are highly selective to organic photoresist. The techniques of the present invention are suitable for fabricating optically smooth SinullGe surfaces. A cavity was etched in a layer of a first SinullGe composition using SF6/C4F8 etch chemistry at low bias power. The cavity was then filled with a second SinullGe composition having a higher refractive index than the first SinullGe composition. A waveguide was subsequently fabricated by depositing a cladding layer on the second SinullGe composition that was formed in the cavity. In a further embodiment a cluster tool is employed for executing processing steps of the present invention inside the vacuum environment of the cluster tool. In an additional embodiment a manufacturing system is provided for fabricating waveguides of the present invention. The manufacturing system includes a controller that is adapted for interacting with a plurality of fabricating stations.
    • 本发明提供了用于蚀刻Si-Ge的新颖蚀刻技术,其采用SF6 /氟碳蚀刻化学品,以低偏压功率。 这些等离子体条件对有机光致抗蚀剂具有高选择性。 本发明的技术适用于制造光学平滑的Si-Ge表面。 在低偏压功率下,使用SF6 / C4F8蚀刻化学法在第一Si-Ge组合物的层中蚀刻空腔。 然后用具有比第一Si-Ge组合物更高的折射率的第二Si-Ge组合物填充空腔。 随后通过在形成在空腔中的第二Si-Ge组合物上沉积包覆层来制造波导。 在另一个实施例中,采用集群工具来在集群工具的真空环境内执行本发明的处理步骤。 在另外的实施例中,提供制造系统用于制造本发明的波导。 该制造系统包括适于与多个制造站相互作用的控制器。