会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Inertia shaping for humanoid fall direction change
    • 惯性成形为人形学下降方向变化
    • US08352077B2
    • 2013-01-08
    • US12610872
    • 2009-11-02
    • Ambarish GoswamiSeung-kook YunKangkang YinYoshiaki Sakagami
    • Ambarish GoswamiSeung-kook YunKangkang YinYoshiaki Sakagami
    • G05B19/402
    • B62D57/032
    • A system and method is disclosed for controlling a robot that is falling down from an upright posture. Inertia shaping is performed on the robot to avoid an object during the fall. A desired overall toppling angular velocity of the robot is determined. The direction of this velocity is based on the direction from the center of pressure of the robot to the object. A desired composite rigid body inertia of the robot is determined based on the desired overall toppling angular velocity. A desired joint velocity of the robot is determined based on the desired composite rigid body inertia. The desired joint velocity is also determined based on a composite rigid body inertia Jacobian of the robot. An actuator at a joint of the robot is then controlled to implement the desired joint velocity.
    • 公开了一种用于控制从直立姿势落下的机器人的系统和方法。 在机器人上进行惯性整形,以避免坠落期间的物体。 确定机器人的期望的整体倾倒角速度。 该速度的方向基于从机器人的压力中心到物体的方向。 基于期望的整体倾倒角速度来确定机器人的期望的复合刚体惯性。 基于期望的复合刚体惯性来确定机器人的期望接合速度。 所需的接合速度也是基于机器人的复合刚体惯性雅可比确定的。 然后控制机器人的接头处的致动器以实现所需的接合速度。
    • 2. 发明申请
    • Inertia Shaping For Humanoid Fall Direction Change
    • 惯性成形为人形坠落方向变化
    • US20100161131A1
    • 2010-06-24
    • US12610872
    • 2009-11-02
    • Ambarish GoswamiSeung-kook YunKangkang YinYoshiaki Sakagami
    • Ambarish GoswamiSeung-kook YunKangkang YinYoshiaki Sakagami
    • G06F19/00G06F17/11
    • B62D57/032
    • A system and method is disclosed for controlling a robot that is falling down from an upright posture. Inertia shaping is performed on the robot to avoid an object during the fall. A desired overall toppling angular velocity of the robot is determined. The direction of this velocity is based on the direction from the center of pressure of the robot to the object. A desired composite rigid body inertia of the robot is determined based on the desired overall toppling angular velocity. A desired joint velocity of the robot is determined based on the desired composite rigid body inertia. The desired joint velocity is also determined based on a composite rigid body inertia Jacobian of the robot. An actuator at a joint of the robot is then controlled to implement the desired joint velocity.
    • 公开了一种用于控制从直立姿势落下的机器人的系统和方法。 在机器人上进行惯性整形,以避免坠落期间的物体。 确定机器人的期望的整体倾倒角速度。 该速度的方向基于从机器人的压力中心到物体的方向。 基于期望的整体倾倒角速度来确定机器人的期望的复合刚体惯性。 基于期望的复合刚体惯性来确定机器人的期望接合速度。 所需的接合速度也是基于机器人的复合刚体惯性雅可比确定的。 然后控制机器人的接头处的致动器以实现所需的接合速度。
    • 3. 发明申请
    • Intelligent Stepping For Humanoid Fall Direction Change
    • 智能步进人型落后方向变化
    • US20100161120A1
    • 2010-06-24
    • US12610865
    • 2009-11-02
    • Ambarish GoswamiSeung-kook YunYoshiaki Sakagami
    • Ambarish GoswamiSeung-kook YunYoshiaki Sakagami
    • G06F19/00
    • B62D57/032
    • A system and method is disclosed for controlling a robot having at least two legs that is falling down from an upright posture. An allowable stepping zone where the robot is able to step while falling is determined. The allowable stepping zone may be determined based on leg Jacobians of the robot and maximum joint velocities of the robot. A stepping location within the allowable stepping zone for avoiding an object is determined. The determined stepping location maximizes an avoidance angle comprising an angle formed by the object to be avoided, a center of pressure of the robot upon stepping to the stepping location, and a reference point of the robot upon stepping to the stepping location. The reference point, which may be a capture point of the robot, indicates the direction of fall of the robot. The robot is controlled to take a step toward the stepping location.
    • 公开了一种用于控制具有从直立姿势落下的至少两条腿的机器人的系统和方法。 确定机器人能够在跌落时踏步的允许步进区域。 可以根据机器人的腿部Jacobians和机器人的最大联合速度来确定允许的步进区域。 确定允许的步进区域内用于避免物体的步进位置。 所确定的步进位置最大化包括由待避免的物体形成的角度,步进到步进位置时机器人的压力中心和步进到步进位置时的机器人的参考点的回避角度。 可以是机器人的捕获点的参考点表示机器人的下落方向。 控制机器人向步进位置迈出一步。
    • 4. 发明授权
    • Intelligent stepping for humanoid fall direction change
    • 智能步进为人形方向下降方向改变
    • US08332068B2
    • 2012-12-11
    • US12610865
    • 2009-11-02
    • Ambarish GoswamiSeung-kook YunYoshiaki Sakagami
    • Ambarish GoswamiSeung-kook YunYoshiaki Sakagami
    • G06F19/00
    • B62D57/032
    • A system and method is disclosed for controlling a robot having at least two legs that is falling down from an upright posture. An allowable stepping zone where the robot is able to step while falling is determined. The allowable stepping zone may be determined based on leg Jacobians of the robot and maximum joint velocities of the robot. A stepping location within the allowable stepping zone for avoiding an object is determined. The determined stepping location maximizes an avoidance angle comprising an angle formed by the object to be avoided, a center of pressure of the robot upon stepping to the stepping location, and a reference point of the robot upon stepping to the stepping location. The reference point, which may be a capture point of the robot, indicates the direction of fall of the robot. The robot is controlled to take a step toward the stepping location.
    • 公开了一种用于控制具有从直立姿势落下的至少两条腿的机器人的系统和方法。 确定机器人能够在跌落时踏步的允许步进区域。 可以根据机器人的腿部Jacobians和机器人的最大联合速度来确定允许的步进区域。 确定允许的步进区域内用于避免物体的步进位置。 所确定的步进位置最大化包括由待避免的物体形成的角度,步进到步进位置时机器人的压力中心和步进到步进位置时的机器人的参考点的回避角度。 可以是机器人的捕获点的参考点表示机器人的下落方向。 控制机器人向步进位置迈出一步。
    • 6. 发明授权
    • Humanoid fall direction change among multiple objects
    • 人型下降方向在多个物体之间变化
    • US08369991B2
    • 2013-02-05
    • US12641163
    • 2009-12-17
    • Ambarish GoswamiUmashankar NagarajanYoshiaki Sakagami
    • Ambarish GoswamiUmashankar NagarajanYoshiaki Sakagami
    • G05B19/04G05B19/18
    • B62D57/032
    • A system and method is disclosed for controlling a robot having at least two legs, the robot falling down from an upright posture and the robot located near a plurality of surrounding objects. A plurality of predicted fall directions of the robot are determined, where each predicted fall direction is associated with a foot placement strategy, such as taking a step, for avoiding the surrounding objects. The degree to which each predicted fall direction avoids the surrounding objects is determined. A best strategy is selected from the various foot placement strategies based on the degree to which the associated fall direction avoids the surrounding objects. The robot is controlled to implement this best strategy.
    • 公开了一种用于控制具有至少两条腿的机器人的系统和方法,所述机器人从直立姿势落下并且所述机器人位于多个周围物体附近。 确定机器人的多个预测的下降方向,其中每个预测的下降方向与脚部放置策略相关联,例如采取步骤以避免周围物体。 确定每个预测的下降方向避免周围物体的程度。 根据相关秋季方向避免周围物体的程度,从各种脚部放置策略中选择最佳策略。 控制机器人实施这一最佳策略。
    • 8. 发明授权
    • Humanoid robot push recovery on level and non-level ground
    • 人型机器人在水平和非水平地面上推动恢复
    • US08849454B2
    • 2014-09-30
    • US13425383
    • 2012-03-20
    • Seungkook YunAmbarish GoswamiSung-Hee Lee
    • Seungkook YunAmbarish GoswamiSung-Hee Lee
    • B25J9/16B62D57/032
    • B62D57/032Y10S901/01
    • A robot controller controls a robot to maintain balance in response to an external disturbance (e.g., a push) on level or non-level ground. The robot controller determines a predicted stepping location for the robot such that the robot will be able to maintain a balanced upright position if it steps to that location. As long as the stepping location predicted stepping location remains within a predefined region (e.g., within the area under the robot's feet), the robot will maintain balance in response to the push via postural changes without taking a step. If the predicted stepping location moves outside the predefined region, the robot will take a step to the predicted location in order to maintain its balance.
    • 机器人控制器控制机器人以响应于水平或非水平地面上的外部干扰(例如,推动)而保持平衡。 机器人控制器确定机器人的预测步进位置,使得如果机器人步进到该位置,则机器人将能够保持平衡的直立位置。 只要步进位置预测步进位置保持在预定区域内(例如,在机器人脚下的区域内),机器人将通过姿势改变来响应于推动而保持平衡,而不采取步骤。 如果预测的步进位置移动到预定区域之外,机器人将采取步骤到预测位置,以保持其平衡。
    • 9. 发明申请
    • Systems and methods for controlling a legged robot based on rate of change of angular momentum
    • 基于角动量变化率控制腿式机器人的系统和方法
    • US20050234593A1
    • 2005-10-20
    • US11096835
    • 2005-03-31
    • Ambarish GoswamiVinutha Kallem
    • Ambarish GoswamiVinutha Kallem
    • B62D57/032G06F19/00
    • B62D57/032
    • Systems and methods are presented that use the rate of change of a legged robot's centroidal angular momentum ({dot over (H)}G) in order to maintain or improve the robot's balance. In one embodiment, a control system determines the current value of {dot over (H)}G, compares this value to a threshold value, and determines an instruction to send to the robot. Executing the instruction causes the robot to remain stable or become more stable. Systems and methods are also presented that use a value derived from {dot over (H)}G in order to maintain or improve the robot's balance. In one embodiment, a control system determines the location of the Zero Rate of change of Angular Momentum (ZRAM) point (A), determines the distance between A and the location of the center of pressure of the resultant ground force, compares this value to a threshold value, and determines an instruction to send to the robot.
    • 提出了使用腿式机器人的重心角动量的变化率({dot over(H >G ))的系统和方法,以便保持或改善机器人的平衡在一个实施例中,控制系统 确定{dot over(H> G )的当前值,将该值与阈值进行比较,并确定发送给机器人的指令,执行指令使机器人保持稳定或变得更稳定 还提出了系统和方法,其使用从{dot over(H> SUB SUB SUB SUB SUB SUB SUB SUB SUB to to to maintain maintain maintain maintain maintain maintain maintain maintain maintain maintain maintain maintain maintain maintain a a a a a a a a a Rate Rate Rate Rate。。。。。 的角动量(ZRAM)点(A)的变化决定了A与合成地面力的中心位置之间的距离,将该值与阈值进行比较,并确定发送给机器人的指令。
    • 10. 发明授权
    • Systems and methods for controlling a legged robot using a two-phase disturbance response strategy
    • 使用两相干扰响应策略控制腿式机器人的系统和方法
    • US08145354B2
    • 2012-03-27
    • US12904990
    • 2010-10-14
    • Ambarish GoswamiMuhammad E. Abdallah
    • Ambarish GoswamiMuhammad E. Abdallah
    • G05B19/04
    • B62D57/032
    • Systems and methods are presented that enable a legged robot to maintain its balance when subjected to an unexpected force. In the reflex phase, the robot withstands the immediate effect of the force by yielding to it. In one embodiment, during the reflex phase, the control system determines an instruction that will cause the robot to perform a movement that generates a negative rate of change of the robot's angular momentum at its centroid in a magnitude large enough to compensate for the destabilizing effect of the force. In the recovery phase, the robot recovers its posture after having moved during the reflex phase. In one embodiment, the robot returns to a statically stable upright posture that maximizes the robot's potential energy. In one embodiment, during the recovery phase, the control system determines an instruction that will cause the robot to perform a movement that increases its potential energy.
    • 提出了系统和方法,使得腿式机器人在受到意想不到的力时保持其平衡。 在反射阶段,机器人能忍受力的立即的影响。 在一个实施例中,在反射阶段期间,控制系统确定将使机器人执行运动的指令,该运动在其质心处产生机器人的角动量的负变化率,其幅度足够大以补偿不稳定效应 的力量。 在恢复阶段,机器人在反射阶段移动后恢复其姿势。 在一个实施例中,机器人返回到使机器人的潜在能量最大化的静态稳定的直立姿态。 在一个实施例中,在恢复阶段期间,控制系统确定将使机器人执行增加其势能的运动的指令。