会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Systems and Methods for Controlling a Legged Robot Based on Rate of Change of Angular Momentum
    • 基于角动量变化速率控制腿式机器人的系统和方法
    • US20120035762A1
    • 2012-02-09
    • US13274156
    • 2011-10-14
    • Ambarish GoswamiVinutha Kallem
    • Ambarish GoswamiVinutha Kallem
    • G06F19/00
    • B62D57/032
    • Systems and methods are presented that use the rate of change of a legged robot's centroidal angular momentum ({dot over (H)}G) in order to maintain or improve the robot's balance. In one embodiment, a control system determines the current value of {dot over (H)}G, compares this value to a threshold value, and determines an instruction to send to the robot. Executing the instruction causes the robot to remain stable or become more stable. Systems and methods are also presented that use a value derived from {dot over (H)}G in order to maintain or improve the robot's balance. In one embodiment, a control system determines the location of the Zero Rate of change of Angular Momentum (ZRAM) point (A), determines the distance between A and the location of the center of pressure of the resultant ground force, compares this value to a threshold value, and determines an instruction to send to the robot.
    • 提出了使用腿式机器人的重心角动量({dot over(H)} G)的变化率以保持或改善机器人的平衡的系统和方法。 在一个实施例中,控制系统确定{dot over(H)} G的当前值,将该值与阈值进行比较,并确定发送给机器人的指令。 执行指令使机器人保持稳定或变得更稳定。 还提出了使用从{dot over(H)} G导出的值的系统和方法,以便保持或改善机器人的平衡。 在一个实施例中,控制系统确定角速度(ZRAM)点(A)的零变化率的位置,确定A与合成地面力的中心压力位置之间的距离,将该值与 阈值,并且确定发送给机器人的指令。
    • 2. 发明申请
    • Systems and methods for controlling a legged robot based on rate of change of angular momentum
    • 基于角动量变化率控制腿式机器人的系统和方法
    • US20050234593A1
    • 2005-10-20
    • US11096835
    • 2005-03-31
    • Ambarish GoswamiVinutha Kallem
    • Ambarish GoswamiVinutha Kallem
    • B62D57/032G06F19/00
    • B62D57/032
    • Systems and methods are presented that use the rate of change of a legged robot's centroidal angular momentum ({dot over (H)}G) in order to maintain or improve the robot's balance. In one embodiment, a control system determines the current value of {dot over (H)}G, compares this value to a threshold value, and determines an instruction to send to the robot. Executing the instruction causes the robot to remain stable or become more stable. Systems and methods are also presented that use a value derived from {dot over (H)}G in order to maintain or improve the robot's balance. In one embodiment, a control system determines the location of the Zero Rate of change of Angular Momentum (ZRAM) point (A), determines the distance between A and the location of the center of pressure of the resultant ground force, compares this value to a threshold value, and determines an instruction to send to the robot.
    • 提出了使用腿式机器人的重心角动量的变化率({dot over(H >G ))的系统和方法,以便保持或改善机器人的平衡在一个实施例中,控制系统 确定{dot over(H> G )的当前值,将该值与阈值进行比较,并确定发送给机器人的指令,执行指令使机器人保持稳定或变得更稳定 还提出了系统和方法,其使用从{dot over(H> SUB SUB SUB SUB SUB SUB SUB SUB SUB to to to maintain maintain maintain maintain maintain maintain maintain maintain maintain maintain maintain maintain maintain maintain a a a a a a a a a Rate Rate Rate Rate。。。。。 的角动量(ZRAM)点(A)的变化决定了A与合成地面力的中心位置之间的距离,将该值与阈值进行比较,并确定发送给机器人的指令。
    • 3. 发明授权
    • Systems and methods for controlling a legged robot based on rate of change of angular momentum
    • 基于角动量变化率控制腿式机器人的系统和方法
    • US08060253B2
    • 2011-11-15
    • US11096835
    • 2005-03-31
    • Ambarish GoswamiVinutha Kallem
    • Ambarish GoswamiVinutha Kallem
    • G05B19/19G06F19/00G05B19/408
    • B62D57/032
    • Systems and methods are presented that use the rate of change of a legged robot's centroidal angular momentum ({dot over (H)}G) in order to maintain or improve the robot's balance. In one embodiment, a control system determines the current value of {dot over (H)}G, compares this value to a threshold value, and determines an instruction to send to the robot. Executing the instruction causes the robot to remain stable or become more stable. Systems and methods are also presented that use a value derived from {dot over (H)}G in order to maintain or improve the robot's balance. In one embodiment, a control system determines the location of the Zero Rate of change of Angular Momentum (ZRAM) point (A), determines the distance between A and the location of the center of pressure of the resultant ground force, compares this value to a threshold value, and determines an instruction to send to the robot.
    • 提出了使用腿式机器人的重心角动量({dot over(H)} G)的变化率以保持或改善机器人的平衡的系统和方法。 在一个实施例中,控制系统确定{dot over(H)} G的当前值,将该值与阈值进行比较,并确定发送给机器人的指令。 执行指令使机器人保持稳定或变得更稳定。 还提出了使用从{dot over(H)} G导出的值的系统和方法,以便保持或改善机器人的平衡。 在一个实施例中,控制系统确定角速度(ZRAM)点(A)的零变化率的位置,确定A与合成地面力的中心压力位置之间的距离,将该值与 阈值,并且确定发送给机器人的指令。
    • 5. 发明授权
    • Humanoid robot push recovery on level and non-level ground
    • 人型机器人在水平和非水平地面上推动恢复
    • US08849454B2
    • 2014-09-30
    • US13425383
    • 2012-03-20
    • Seungkook YunAmbarish GoswamiSung-Hee Lee
    • Seungkook YunAmbarish GoswamiSung-Hee Lee
    • B25J9/16B62D57/032
    • B62D57/032Y10S901/01
    • A robot controller controls a robot to maintain balance in response to an external disturbance (e.g., a push) on level or non-level ground. The robot controller determines a predicted stepping location for the robot such that the robot will be able to maintain a balanced upright position if it steps to that location. As long as the stepping location predicted stepping location remains within a predefined region (e.g., within the area under the robot's feet), the robot will maintain balance in response to the push via postural changes without taking a step. If the predicted stepping location moves outside the predefined region, the robot will take a step to the predicted location in order to maintain its balance.
    • 机器人控制器控制机器人以响应于水平或非水平地面上的外部干扰(例如,推动)而保持平衡。 机器人控制器确定机器人的预测步进位置,使得如果机器人步进到该位置,则机器人将能够保持平衡的直立位置。 只要步进位置预测步进位置保持在预定区域内(例如,在机器人脚下的区域内),机器人将通过姿势改变来响应于推动而保持平衡,而不采取步骤。 如果预测的步进位置移动到预定区域之外,机器人将采取步骤到预测位置,以保持其平衡。
    • 6. 发明申请
    • Intelligent Stepping For Humanoid Fall Direction Change
    • 智能步进人型落后方向变化
    • US20100161120A1
    • 2010-06-24
    • US12610865
    • 2009-11-02
    • Ambarish GoswamiSeung-kook YunYoshiaki Sakagami
    • Ambarish GoswamiSeung-kook YunYoshiaki Sakagami
    • G06F19/00
    • B62D57/032
    • A system and method is disclosed for controlling a robot having at least two legs that is falling down from an upright posture. An allowable stepping zone where the robot is able to step while falling is determined. The allowable stepping zone may be determined based on leg Jacobians of the robot and maximum joint velocities of the robot. A stepping location within the allowable stepping zone for avoiding an object is determined. The determined stepping location maximizes an avoidance angle comprising an angle formed by the object to be avoided, a center of pressure of the robot upon stepping to the stepping location, and a reference point of the robot upon stepping to the stepping location. The reference point, which may be a capture point of the robot, indicates the direction of fall of the robot. The robot is controlled to take a step toward the stepping location.
    • 公开了一种用于控制具有从直立姿势落下的至少两条腿的机器人的系统和方法。 确定机器人能够在跌落时踏步的允许步进区域。 可以根据机器人的腿部Jacobians和机器人的最大联合速度来确定允许的步进区域。 确定允许的步进区域内用于避免物体的步进位置。 所确定的步进位置最大化包括由待避免的物体形成的角度,步进到步进位置时机器人的压力中心和步进到步进位置时的机器人的参考点的回避角度。 可以是机器人的捕获点的参考点表示机器人的下落方向。 控制机器人向步进位置迈出一步。
    • 7. 发明授权
    • Systems and methods for controlling a legged robot using a two-phase disturbance response strategy
    • 使用两相干扰响应策略控制腿式机器人的系统和方法
    • US08145354B2
    • 2012-03-27
    • US12904990
    • 2010-10-14
    • Ambarish GoswamiMuhammad E. Abdallah
    • Ambarish GoswamiMuhammad E. Abdallah
    • G05B19/04
    • B62D57/032
    • Systems and methods are presented that enable a legged robot to maintain its balance when subjected to an unexpected force. In the reflex phase, the robot withstands the immediate effect of the force by yielding to it. In one embodiment, during the reflex phase, the control system determines an instruction that will cause the robot to perform a movement that generates a negative rate of change of the robot's angular momentum at its centroid in a magnitude large enough to compensate for the destabilizing effect of the force. In the recovery phase, the robot recovers its posture after having moved during the reflex phase. In one embodiment, the robot returns to a statically stable upright posture that maximizes the robot's potential energy. In one embodiment, during the recovery phase, the control system determines an instruction that will cause the robot to perform a movement that increases its potential energy.
    • 提出了系统和方法,使得腿式机器人在受到意想不到的力时保持其平衡。 在反射阶段,机器人能忍受力的立即的影响。 在一个实施例中,在反射阶段期间,控制系统确定将使机器人执行运动的指令,该运动在其质心处产生机器人的角动量的负变化率,其幅度足够大以补偿不稳定效应 的力量。 在恢复阶段,机器人在反射阶段移动后恢复其姿势。 在一个实施例中,机器人返回到使机器人的潜在能量最大化的静态稳定的直立姿态。 在一个实施例中,在恢复阶段期间,控制系统确定将使机器人执行增加其势能的运动的指令。
    • 8. 发明申请
    • Machine Learning Approach for Predicting Humanoid Robot Fall
    • 机器人学习方法预测人型机器人秋季
    • US20100292838A1
    • 2010-11-18
    • US12696783
    • 2010-01-29
    • Ambarish GoswamiShivaram Kalyanakrishnan
    • Ambarish GoswamiShivaram Kalyanakrishnan
    • B25J9/00G06N5/02G06F15/18G06G7/48
    • B25J9/163B62D57/032G06N3/008
    • A system and method is disclosed for predicting a fall of a robot having at least two legs. A learned representation, such as a decision list, generated by a supervised learning algorithm is received. This learned representation may have been generated based on trajectories of a simulated robot when various forces are applied to the simulated robot. The learned representation takes as inputs a plurality of features of the robot and outputs a classification indicating whether the current state of the robot is balanced or falling. A plurality of features of the current state of the robot, such as the height of the center of mass of the robot, are determined based on current values of a joint angle or joint velocity of the robot. The current state of the robot is classified as being either balanced or falling by evaluating the learned representation with the plurality of features of the current state of the robot.
    • 公开了一种用于预测具有至少两条腿的机器人的坠落的系统和方法。 接收由受监督的学习算法产生的诸如决策列表的学习表示。 当将各种力施加到模拟机器人时,可以基于模拟机器人的轨迹产生该学习的表示。 所学习的表示将机器人的多个特征作为输入,并输出表示机器人的当前状态是平衡还是下降的分类。 基于机器人的关节角度或关节速度的当前值来确定机器人的当前状态的多个特征,例如机器人的质心的高度。 通过利用机器人的当前状态的多个特征来评估所学习的表示,将机器人的当前状态分类为平衡或下降。
    • 10. 发明授权
    • Characterization and classification of pose in low dimension
    • 低维姿态的表征和分类
    • US07580774B2
    • 2009-08-25
    • US11746540
    • 2007-05-09
    • Ambarish Goswami
    • Ambarish Goswami
    • G06F7/00
    • G06K9/00369
    • A BodyMap matrix for a pose includes elements representing Euclidean distances between markers on the object. The BodyMap matrix can be normalized and visualized using a grayscale or mesh image, enabling a user to easily interpret the pose. The pose is characterized in a low-dimensional space by determining the singular values of the BodyMap matrix for the pose and using a small set of dominant singular values to characterize and visually represent the pose. A candidate pose is classified in a low-dimensional space by comparing the characterization of the candidate pose to characterizations of known poses and determining which known pose is most similar to the candidate pose. Determining the similarity of the candidate pose to the known poses is accomplished through distance calculations, including the calculation of Mahalanobis distances from the characterization of the candidate pose to characterizations of known poses and their noisy variations.
    • 用于姿势的BodyMap矩阵包括表示对象上的标记之间的欧几里德距离的元素。 BodyMap矩阵可以使用灰度或网格图像进行归一化和可视化,使用户能够轻松地解读姿势。 姿势的特征在于通过确定用于姿势的BodyMap矩阵的奇异值并使用一组主要奇异值来表征和可视地表示姿态,从而在低维空间中被表征。 通过将候选姿势的表征与已知姿势的特征进行比较并确定哪个已知姿势与候选姿势最相似来将候选姿势分类到低维空间中。 通过距离计算确定候选姿势与已知姿势的相似度,包括从候选姿势的表征到已知姿势的特征以及其噪声变化的马氏距离的计算。