会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Single-photon watch dog detector for folded quantum key distribution system
    • 用于折叠量子密钥分发系统的单光子看门狗检测器
    • US07227955B2
    • 2007-06-05
    • US10670979
    • 2003-09-25
    • Alexei TrifonovHarry Vig
    • Alexei TrifonovHarry Vig
    • H04K1/00
    • H04L7/0008H04L7/0075H04L9/0858
    • A single-photon “watch dog” detector for a two-way quantum key distribution (QKD) system. The detector can detect weak probe signals associated with a Trojan horse attack, or weak substitute signals associated with a “man in the middle” attacks. The detector provides for a significant increase in security for a two-way QKD system over the prior art that employs a conventional detector such as a photodiode. By counting the number of weak pulses entering and/or leaving the reflecting QKD station (Alice), an eavesdropper that attempts to add weak pulses to the quantum channel in order to gain phase information from the phase modulator at Alice can be detected.
    • 用于双向量子密钥分发(QKD)系统的单光子“观察狗”检测器。 检测器可以检测与特洛伊木马攻击相关的弱探测信号,或与“中间人”攻击相关的弱替代信号。 与使用诸如光电二极管的常规检测器的现有技术相比,该检测器提供了双向QKD系统的安全性的显着提高。 通过计数进入和/或离开反射QKD站(Alice)的弱脉冲的数量,可以检测试图向量子信道添加弱脉冲以在Alice处从相位调制器获得相位信息的窃听器。
    • 3. 发明授权
    • Constant modulation for enhancing QKD security
    • 用于增强QKD安全性的恒定调制
    • US07233672B2
    • 2007-06-19
    • US10970043
    • 2004-10-21
    • J. Howell MitchellHarry VigJonathan YoungAlexei Trifonov
    • J. Howell MitchellHarry VigJonathan YoungAlexei Trifonov
    • H04L9/08G02F1/00
    • H04L9/0858
    • A method of improving the security of a QKD system is disclosed. The QKD system exchanges qubits between QKD stations, wherein the brief period of time surrounding the expected arrival time of a qubit at a modulator in a QKD station defines a gating interval. The method includes randomly activating the modulator in a QKD station both within the gating interval and outside of the gating interval, while recording those modulations made during the gating interval. Such continuous or near-continuous modulation prevents an eavesdropper from assuming that the modulations correspond directly to the modulation of a qubit. Thus, an eavesdropper (Eve) has the additional and daunting task of determining which modulations correspond to actual qubit modulations before she can begin to extract any information from detected modulation states of the modulator.
    • 公开了一种提高QKD系统安全性的方法。 QKD系统在QKD站之间交换量子位,其中围绕QKD站中的调制器的量子位的预期到达时间的短暂时间段定义了门控间隔。 该方法包括在选通间隔内和选通间隔外部随机激活QKD站中的调制器,同时记录在门控间隔期间进行的调制。 这种连续或接近连续的调制防止窃听者假设调制直接对应于量子比特的调制。 因此,窃听者(Eve)在开始从调制器的检测到的调制状态开始提取任何信息之前,具有确定哪些调制对应于实际量子调制的附加且艰巨的任务。
    • 4. 发明授权
    • Timing error reduction in QKD systems
    • QKD系统的定时误差减少
    • US07409162B2
    • 2008-08-05
    • US10969813
    • 2004-10-20
    • Harry VigAlexei Trifonov
    • Harry VigAlexei Trifonov
    • H04B10/00G06F1/04
    • H04L9/0852H04L7/0008H04L7/0075H04L7/02H04L2209/34
    • Systems and methods for reducing or eliminating timing errors in a quantum key distribution (QKD) system (100) are disclosed. The QKD system has a pulse generator with retimer (PGRT) that includes a field-programmable gate array (FPGA) (or FPGA output) which is used as a timing generator (TG). While an FPGA has the desired degree of programmability for use in a QKD system, it also suffers from undue amounts of jitter in the digital output. The present invention utilizes emitter-coupled logic (ECL) to reduce the timing jitter from the FPGA by coupling two ECL delays (ECL delay 1 and ECL delay 2) to the FPGA and to retiming block, and by using an ECL logical AND gate to set the pulse width of the various synchronization signals. An embodiment of the present invention includes multiple clock domains having individual clocks (CLK), phase-lock loops (PLLs), retiming circuits (RT) and timing generators (TG) for robust jitter reduction and hence highly accurate QKD system timing.
    • 公开了用于减少或消除量子密钥分发(QKD)系统(100)中的定时误差的系统和方法。 QKD系统具有重新定标器(PGRT)的脉冲发生器,其包括用作定时发生器(TG)的现场可编程门阵列(FPGA)(或FPGA输出)。 虽然FPGA具有在QKD系统中使用的可编程程度,但也会受到数字输出中不适当的抖动的影响。 本发明利用发射极耦合逻辑(ECL)通过将两个ECL延迟(ECL延迟1和ECL延迟2)耦合到FPGA和重定时块来减少来自FPGA的定时抖动,并且通过使用ECL逻辑与门 设置各种同步信号的脉冲宽度。 本发明的一个实施例包括具有单独时钟(CLK),锁相环(PLL),重定时电路(RT)和定时发生器(TG)的多个时钟域,用于鲁棒的抖动减小,因此具有高精度的QKD系统定时。
    • 5. 发明授权
    • Quantum noise random number generator
    • 量子噪声随机数发生器
    • US07284024B1
    • 2007-10-16
    • US10740298
    • 2003-12-18
    • Alexei TrifonovHarry Vig
    • Alexei TrifonovHarry Vig
    • G06J1/00
    • B82Y10/00G06F7/588G06N99/002H04L9/0662H04L9/0852H04L2209/08
    • A quantum noise random number generator system that employs quantum noise from an optical homodyne detection apparatus is disclosed. The system utilizes the quantum noise generated by splitting a laser light signal using a beamsplitter having four ports, one of which receives one of which is receives the laser light signal, one of which is connected to vacuum, and two of which are optically coupled to photodetectors. Processing electronics process the difference signal derived from subtracting the two photodetector signals to create a random number sequence. Because the difference signal associated with the two photodetectors is truly random, the system is a true random number generator.
    • 公开了一种采用来自光学零差检测装置的量子噪声的量子噪声随机数发生器系统。 该系统利用通过使用具有四个端口的分束器分割激光信号而产生的量子噪声,其中一个接收其中的一个接收激光信号,其中之一连接到真空,其中两个光学耦合到 光电探测器 处理电子器件处理从减去两个光电检测器信号得到的差分信号,以产生随机数序列。 由于与两个光电探测器相关的差分信号是真正随机的,所以该系统是一个真正的随机数发生器。
    • 6. 发明申请
    • Optical pulse calibration for quantum key distribution
    • 量子密钥分配的光脉冲校准
    • US20050111667A1
    • 2005-05-26
    • US10706815
    • 2003-11-12
    • Harry VigAlexei Trifonov
    • Harry VigAlexei Trifonov
    • H04L9/08H04K1/00
    • H04B10/70H04L9/0858
    • Methods and systems for generating calibrated optical pulses in a QKD system. The method includes calibrating a variable optical attenuator (VOA) by first passing radiation pulses of a given intensity and pulse width through the VOA for a variety of VOA settings. The method further includes resetting the VOA to maximum attenuation and sending through the VOA optical pulses having varying pulse widths. The method also includes determining the power needed at the receiver in the QKD system, and setting the VOA so that optical pulses generated by the optical radiation source are calibrated to provide the needed average power. Such calibration is critical in a QKD system, where the average number of photons per pulse needs to be very small—i.e., on the order of 0.1 photons per pulse—in order to ensure quantum security of the system.
    • 用于在QKD系统中产生校准光脉冲的方法和系统。 该方法包括通过首先将给定强度和脉冲宽度的辐射脉冲通过用于各种VOA设置的VOA来校准可变光衰减器(VOA)。 该方法还包括将VOA重置为最大衰减并通过具有变化的脉冲宽度的VOA光脉冲发送。 该方法还包括确定QKD系统中的接收机所需的功率,以及设置VOA,使得由光辐射源产生的光脉冲被校准以提供所需的平均功率。 这种校准在QKD系统中是至关重要的,其中每个脉冲的平均光子数需要非常小,即每脉冲0.1个光子量级,以确保系统的量子安全性。
    • 7. 发明申请
    • System and method for providing two-way communication of quantum signals, timing signals, and public data
    • 用于提供量子信号,定时信号和公共数据的双向通信的系统和方法
    • US20060093376A1
    • 2006-05-04
    • US10978973
    • 2004-11-01
    • J. MitchellHarry VigAnton ZavriyevAlexei Trifonov
    • J. MitchellHarry VigAnton ZavriyevAlexei Trifonov
    • H04B10/04
    • H04B10/70
    • A system and method for providing two-way communication of quantum signals, timing signals, and public data is provided. Generally, the system contains a first public data transceiver capable of transmitting and receiving public data in accordance with a predefined timing sequence, a first optical modulator/demodulator capable of transmitting and receiving timing signals in accordance with the predefined timing sequence, a first quantum transceiver capable of transmitting and receiving quantum signals in accordance with the predefined timing sequence, and a first controller connected to the first public data transceiver, the first optical modulator/demodulator, and the first quantum transceiver. The first controller is capable of controlling the transmission of the public data, the timing signals, and the quantum signals in accordance with the predefined timing sequence.
    • 提供了一种用于提供量子信号,定时信号和公共数据的双向通信的系统和方法。 通常,该系统包括能够根据预定义的定时序列发送和接收公共数据的第一公共数据收发器,能够根据预定定时序列发送和接收定时信号的第一光调制器/解调器,第一量子收发器 能够根据预定义的定时顺序发送和接收量子信号,以及连接到第一公共数据收发器,第一光调制器/解调器和第一量子收发器的第一控制器。 第一控制器能够根据预定义的时序顺序来控制公共数据,定时信号和量子信号的传输。
    • 8. 发明申请
    • Timing error reduction in QKD systems
    • QKD系统的定时误差减少
    • US20060034615A1
    • 2006-02-16
    • US10969813
    • 2004-10-20
    • Harry VigAlexei Trifonov
    • Harry VigAlexei Trifonov
    • H04B10/00
    • H04L9/0852H04L7/0008H04L7/0075H04L7/02H04L2209/34
    • Systems and methods for reducing or eliminating timing errors in a quantum key distribution (QKD) system (100) are disclosed. The QKD system has a pulse generator with retimer (PGRT) that includes a field-programmable gate array (FPGA) (or FPGA output) which is used as a timing generator (TG). While an FPGA has the desired degree of programmability for use in a QKD system, it also suffers from undue amounts of jitter in the digital output. The present invention utilizes emitter-coupled logic (ECL) to reduce the timing jitter from the FPGA by coupling two ECL delays (ECL delay 1 and ECL delay 2) to the FPGA and to retiming block, and by using an ECL logical AND gate to set the pulse width of the various synchronization signals. An embodiment of the present invention includes multiple clock domains having individual clocks (CLK), phase-lock loops (PLLs), retiming circuits (RT) and timing generators (TG) for robust jitter reduction and hence highly accurate QKD system timing.
    • 公开了用于减少或消除量子密钥分发(QKD)系统(100)中的定时误差的系统和方法。 QKD系统具有重新定标器(PGRT)的脉冲发生器,其包括用作定时发生器(TG)的现场可编程门阵列(FPGA)(或FPGA输出)。 虽然FPGA具有在QKD系统中使用的可编程程度,但也会受到数字输出中不适当的抖动的影响。 本发明利用发射极耦合逻辑(ECL)通过将两个ECL延迟(ECL延迟1和ECL延迟2)耦合到FPGA和重定时块来减少来自FPGA的定时抖动,并且通过使用ECL逻辑与门 设置各种同步信号的脉冲宽度。 本发明的一个实施例包括具有单独时钟(CLK),锁相环(PLL),重定时电路(RT)和定时发生器(TG)的多个时钟域,用于鲁棒的抖动减小,因此具有高精度的QKD系统定时。
    • 9. 发明申请
    • Kd systems with robust timing
    • Kd系统具有鲁棒的时序
    • US20060018475A1
    • 2006-01-26
    • US10532656
    • 2004-02-07
    • Harry VigAlexei TrifonovLiuping Chen
    • Harry VigAlexei TrifonovLiuping Chen
    • H04K1/00
    • H04L9/0852
    • QKD systems having timing systems and timing method that allow for QKD to be performed in actual field conditions associated with practical commercial applications of quantum cryptography. The QKD system includes optical modems in each QKD station. Each modem has a circulator with an optical receiver and an optical transmitter coupled to it. One of the optical modems includes two phase lock loops and the other optical modem includes a phase lock loop and a transmit clock. Synchronization pulses are exchanged between the optical modems over a timing channel to synchronize the operation of the QKD system. The phase lock loops serve to lock a receive timing domain to a transmit time domain to ensure proper encoding and detection of weak quantum signals exchanged between the QKD stations.
    • 具有定时系统和定时方法的QKD系统允许在与量子密码学的实际商业应用相关的实际现场条件下执行QKD。 QKD系统包括每个QKD站中的光调制解调器。 每个调制解调器具有带有光接收器的循环器和耦合到其的光发射器。 其中一个光调制解调器包括两个锁相环,另一个光调制解调器包括锁相环和发送时钟。 同步脉冲通过定时通道在光调制解调器之间交换,以使QKD系统的操作同步。 锁相环用于将接收定时域锁定到发射时域,以确保在QKD站之间交换的弱量子信号的适当编码和检测。
    • 10. 发明授权
    • Systems and methods for multiplexing QKD channels
    • QKD信道复用的系统和方法
    • US07809269B2
    • 2010-10-05
    • US11660712
    • 2005-08-23
    • J. Howell MitchellHarry Vig
    • J. Howell MitchellHarry Vig
    • H04L9/00H04K3/00
    • H04B10/70H04L9/0852
    • Systems and methods for multiplexing two or more channels of a quantum key distribution (QKD) system are disclosed. A method includes putting the optical public channel signal (SP1) in return-to-zero (RZ) format in a transmitter (T) in one QKD station (Alice) and amplifying this signal (thereby forming SP1*) just prior to this signal being detected with a detector (30) in a receiver (R) at the other QKD station (Bob). The method further includes precisely gating the detector via a gating element (40) and a coincident signal (PN1′) with pulses that coincide with the expected arrival times of the pulses in the detected (electrical) public channel signal (SP2). This allows for the public channel signal to have much less power, making it more amenable for multiplexing with the other QKD signals.
    • 公开了用于复用量子密钥分发(QKD)系统的两个或多个信道的系统和方法。 一种方法包括在一个QKD站(Alice)中的发射机(T)中放置归零(RZ)格式的光学公共信道信号(SP1),并且在该信号之前放大该信号(从而形成SP1 *) 在另一个QKD站(Bob)的接收机(R)中用检测器(30)检测。 该方法还包括通过门控元件(40)和与重新检测的(电)公共信道信号(SP2)中的脉冲的预期到达时间一致的脉冲的重合信号(PN1')精确地选通检测器。 这允许公共信道信号具有更少的功率,使得它更适合与其他QKD信号的复用。