会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Systems and methods for multiplexing QKD channels
    • QKD信道复用的系统和方法
    • US07809269B2
    • 2010-10-05
    • US11660712
    • 2005-08-23
    • J. Howell MitchellHarry Vig
    • J. Howell MitchellHarry Vig
    • H04L9/00H04K3/00
    • H04B10/70H04L9/0852
    • Systems and methods for multiplexing two or more channels of a quantum key distribution (QKD) system are disclosed. A method includes putting the optical public channel signal (SP1) in return-to-zero (RZ) format in a transmitter (T) in one QKD station (Alice) and amplifying this signal (thereby forming SP1*) just prior to this signal being detected with a detector (30) in a receiver (R) at the other QKD station (Bob). The method further includes precisely gating the detector via a gating element (40) and a coincident signal (PN1′) with pulses that coincide with the expected arrival times of the pulses in the detected (electrical) public channel signal (SP2). This allows for the public channel signal to have much less power, making it more amenable for multiplexing with the other QKD signals.
    • 公开了用于复用量子密钥分发(QKD)系统的两个或多个信道的系统和方法。 一种方法包括在一个QKD站(Alice)中的发射机(T)中放置归零(RZ)格式的光学公共信道信号(SP1),并且在该信号之前放大该信号(从而形成SP1 *) 在另一个QKD站(Bob)的接收机(R)中用检测器(30)检测。 该方法还包括通过门控元件(40)和与重新检测的(电)公共信道信号(SP2)中的脉冲的预期到达时间一致的脉冲的重合信号(PN1')精确地选通检测器。 这允许公共信道信号具有更少的功率,使得它更适合与其他QKD信号的复用。
    • 2. 发明授权
    • Constant modulation for enhancing QKD security
    • 用于增强QKD安全性的恒定调制
    • US07233672B2
    • 2007-06-19
    • US10970043
    • 2004-10-21
    • J. Howell MitchellHarry VigJonathan YoungAlexei Trifonov
    • J. Howell MitchellHarry VigJonathan YoungAlexei Trifonov
    • H04L9/08G02F1/00
    • H04L9/0858
    • A method of improving the security of a QKD system is disclosed. The QKD system exchanges qubits between QKD stations, wherein the brief period of time surrounding the expected arrival time of a qubit at a modulator in a QKD station defines a gating interval. The method includes randomly activating the modulator in a QKD station both within the gating interval and outside of the gating interval, while recording those modulations made during the gating interval. Such continuous or near-continuous modulation prevents an eavesdropper from assuming that the modulations correspond directly to the modulation of a qubit. Thus, an eavesdropper (Eve) has the additional and daunting task of determining which modulations correspond to actual qubit modulations before she can begin to extract any information from detected modulation states of the modulator.
    • 公开了一种提高QKD系统安全性的方法。 QKD系统在QKD站之间交换量子位,其中围绕QKD站中的调制器的量子位的预期到达时间的短暂时间段定义了门控间隔。 该方法包括在选通间隔内和选通间隔外部随机激活QKD站中的调制器,同时记录在门控间隔期间进行的调制。 这种连续或接近连续的调制防止窃听者假设调制直接对应于量子比特的调制。 因此,窃听者(Eve)在开始从调制器的检测到的调制状态开始提取任何信息之前,具有确定哪些调制对应于实际量子调制的附加且艰巨的任务。
    • 3. 发明申请
    • Systems and Methods for Multiplexing Qkd Channels
    • 用于复用Qkd通道的系统和方法
    • US20070258592A1
    • 2007-11-08
    • US11660712
    • 2005-08-23
    • J. Howell MitchellHarry Vig
    • J. Howell MitchellHarry Vig
    • H04L9/00H04K3/00
    • H04B10/70H04L9/0852
    • Systems and methods for multiplexing two or more channels of a quantum key distribution (QKD) system are disclosed. A method includes putting the optical public channel signal (SP1) in return-to-zero (RZ) format in a transmitter (T) in one QKD station (Alice) and amplifying this signal (thereby forming SP1*) just prior to this signal being detected with a detector (30) in a receiver (R) at the other QKD station (Bob). The method further includes precisely gating the detector via a gating element (40) and a coincident signal (PN1′) with pulses that coincide with the expected arrival times of the pulses in the detected (electrical) public channel signal (SP2). This allows for the public channel signal to have much less power, making it more amenable for multiplexing with the other QKD signals.
    • 公开了用于复用量子密钥分发(QKD)系统的两个或多个信道的系统和方法。 一种方法包括将光学公共信道信号(SP 1)以归零(RZ)格式放置在一个QKD站(Alice)中的发射机(T)中,并且在刚好在该区域之前放大该信号(从而形成SP 1 *) 该信号由另一个QKD站(Bob)的接收机(R)中的检测器(30)检测。 该方法还包括通过选通元件(40)和与所检测(电)公共信道信号(SP 2)中的脉冲的预期到达时间一致的脉冲的重合信号(PN 1')精确地选通检测器。 这允许公共信道信号具有更少的功率,使得它更适合与其他QKD信号的复用。
    • 5. 发明授权
    • Cascaded modulator system and method for QKD
    • 级联调制器系统和QKD方法
    • US07447386B2
    • 2008-11-04
    • US11360544
    • 2006-02-23
    • J. Howell Mitchell, Jr.Harry VigMichael J. LaGasse
    • J. Howell Mitchell, Jr.Harry VigMichael J. LaGasse
    • G02F1/01H04B10/04H04K1/00
    • H04B10/5051H04B10/505H04B10/5561H04L9/0852
    • A cascaded modulator system (20) and method for a QKD system (10) is disclosed. The modulator system includes to modulators (M1 and M2) optically coupled in series. A parallel shift register (50) generates two-bit (i.e., binary) voltages (L1, L2). These voltage levels are adjusted by respective voltage adjusters (30-1 and 30-2) to generate weighted voltages (V1, V2) that drive the respective modulators. An electronic delay element (40) that matches the optical delay between modulators provides for modulator timing (gating). The net modulation (MNET) imparted to an optical signal (60) is the sum of the modulations imparted by the modulators. The modulator system provides four possible net modulations based only on binary voltage signals. This makes for faster and more efficient modulation in QKD systems and related optical systems when compared to using quad-level voltage signals to drive a single modulator.
    • 公开了一种用于QKD系统(10)的级联调制器系统(20)和方法。 调制器系统包括串联光耦合的调制器(M 1和M 2)。 并行移位寄存器(50)产生两位(即二进制)电压(L 1,L 2)。 这些电压电平由相应的电压调节器(30-1和30-2)调节以产生驱动各个调制器的加权电压(V 1,V 2)。 与调制器之间的光学延迟匹配的电子延迟元件(40)提供调制器定时(门控)。 赋予光信号(60)的净调制(M NET NET)是由调制器赋予的调制之和。 调制器系统仅提供基于二进制电压信号的四种可能的净调制。 与使用四电平电压信号驱动单个调制器相比,这使得QKD系统和相关光学系统中的调制更快更有效。
    • 6. 发明授权
    • Frame synchronization method for QKD systems
    • QKD系统的帧同步方法
    • US07539314B2
    • 2009-05-26
    • US11503774
    • 2006-08-14
    • Audrius BerzanskisBrandon KwokHarry VigJonathan Young
    • Audrius BerzanskisBrandon KwokHarry VigJonathan Young
    • H04L9/00H04L9/08
    • H04L9/0852H04L9/12
    • Systems and methods for exchanging and processing encoded quantum signals in quantum key distribution (QKD) systems in real time. A stream of quantum signals is sent from Alice to Bob. Alice only encodes sets or “frames” of the streamed quantum signals based on receiving a “ready” message from Bob. This allows for Bob to finish processing the previous frame of data by allowing different bit buffers to fill and then be used for data processing. This approach results in gaps in between frames wherein quantum signals in the stream are sent unencoded and ignored by Bob. However, those quantum signals that are encoded for the given frame are efficiently processed, which on the whole is better than missing encoded quantum signals because Bob is not ready to receive and process them.
    • 在量子密钥分配(QKD)系统中实时交换和处理编码量子信号的系统和方法。 量子信号流从爱丽丝发送到鲍勃。 基于从Bob接收到“准备”消息,爱丽丝只对流量子信号的集合或“帧”进行编码。 这允许Bob通过允许不同的位缓冲器填充然后用于数据处理来完成对前一帧数据的处理。 这种方法导致帧之间的间隙,其中流中的量子信号被未被编码并由Bob忽略。 然而,对于给定帧编码的那些量子信号被有效地处理,由于Bob没有准备好接收和处理这些量子信号,所以总体上比编码的量子信号更好。
    • 7. 发明申请
    • QKD system with dual-mode pulse generator
    • QKD系统采用双模脉冲发生器
    • US20070210851A1
    • 2007-09-13
    • US11801843
    • 2007-05-11
    • Harry Vig
    • Harry Vig
    • G06F1/04
    • G06F1/04
    • A QKD system that includes a dual-mode pulse generator capable of operating as both a clock-based pulse generator and a delay-based pulse generator while minimizing the limitations of these two types of pulse generators is disclosed. When the pulse generator operates in “delay mode,” the smallest output pulse width possible corresponds to the minimum set point delay between the two delay circuits. The largest possible output pulse width corresponds to the difference between the maximum and minimum of the delay circuits. The delay mode is used to send relatively narrow optical pulses between the QKD stations to establish a quantum key. When the dual-mode pulse generator operates in “clock mode,” the output of one of the delay circuits is blocked so that the output of the gate depends solely on the output of other delay circuit. This limits the lower pulse width interval to that of the retimer clock, but allows for arbitrarily long (wide) optical pulses. The clock mode is used to send the relatively wide optical pulses between the QKD stations to calibrate the QKD system.
    • 公开了一种包括双模脉冲发生器的QKD系统,其能够同时作为基于时钟的脉冲发生器和基于延迟的脉冲发生器,同时最小化这两种类型的脉冲发生器的限制。 当脉冲发生器工作在“延迟模式”时,最小的输出脉冲宽度可能对应于两个延迟电路之间的最小设定点延迟。 最大可能的输出脉冲宽度对应于延迟电路的最大值和最小值之间的差值。 延迟模式用于在QKD站之间发送相对窄的光脉冲以建立量子密钥。 当双模脉冲发生器以“时钟模式”工作时,其中一个延迟电路的输出被阻塞,使得门的输出仅取决于其它延迟电路的输出。 这将限制较小的脉冲宽度间隔与重新定时器时钟的间隔,但允许任意长(宽)的光脉冲。 时钟模式用于在QKD站之间发送相对较宽的光脉冲,以校准QKD系统。
    • 8. 发明申请
    • Laser autocalibration for qkd systems
    • qkd系统的激光自动校准
    • US20070165862A1
    • 2007-07-19
    • US10589419
    • 2005-03-03
    • Jonathan YoungHarry VigMichael Lagasse
    • Jonathan YoungHarry VigMichael Lagasse
    • H04L9/00
    • H04B10/70H04L9/0852
    • A method of autocalibrating a quantum key distribution (QKD) system (200) is disclosed. The QKD system includes a laser ((202) that generates photon signals in response to a laser gating signal (S0) from a controller (248). The method includes first performing a laser gate scan (304) to establish the optimum arrival time (TMAX) of the laser gating signal corresponding to an optimum- e.g., a maximum number of photon counts (NMAX)—from a single-photon detector (SPD) unit (216) in the QKD system when exchanging photon signals between encoding stations (Alice and Bob) of the QKD system. Once the optimal laser gating signal arrival time (TMAX) is determined, the laser gate scan is terminated and a laser gate dither process (308) is initiated. The laser dither involves varying the arrival time (T) of the laser gating signal around the optimum value of the arrival time TMAX. The laser gate dither provides minor adjustments to the laser gating signal arrival time to ensure that the SPD unit produces an optimum (e.g., maximum) number of photon counts.
    • 公开了一种自动校准量子密钥分发(QKD)系统(200)的方法。 QKD系统包括激光器(202),其响应于来自控制器(248)的激光选通信号(S 0)产生光子信号,该方法包括首先执行激光门扫描(304)以建立最佳到达时间 对应于来自单光子检测器(SPD)的最佳例如最大光子计数数(N MAX MAX)的激光门控信号的最大值(T MAX MAX) 在QKD系统的编码站(Alice和Bob)之间交换光子信号时,QKD系统中的单元(216),一旦确定了最佳激光门控信号到达时间(T MAX MAX),激光门 扫描被终止并且激光门抖动处理(308)被启动。激光抖动涉及将激光门控信号的到达时间(T)变化到达到达时间T MAX MAX的最佳值。 激光门抖动对激光门控信号到达时间进行微调,以确保SPD单元产生最佳(例如,最大值) )光子计数。
    • 10. 发明授权
    • QKD system with common-mode dithering
    • QKD系统具有共模抖动
    • US08059964B2
    • 2011-11-15
    • US11880340
    • 2007-07-20
    • Harry Vig
    • Harry Vig
    • H04L9/08H04L9/28
    • H04L9/0852H04B10/70
    • A QKD system (10) having two QKD stations (Alice and Bob) optically coupled by an optical fiber link (FL), wherein Bob includes a variable timing delay arranged between Bob's controller (CB) and modulator (MB) or detector unit (40). A set-up and calibration procedure is performed wherein delay DL2 is adjusted until the timings for the modulator and detector unit (TSB and TS42, respectively) are established. Delay DL2 is then fixed so that the detector unit and modulator operate in a common timing mode that is not changed if the synchronization signal is changed. The timing TSS of the synchronization (sync) signals (SS) sent from Alice to Bob is adjusted to arrive at optimum system performance. Once the QKD system is in operation, because the sync signal can drift, the sync signal timing TSS is dithered maintain optimum QKD system performance. Since the modulator and detector unit timing is tied together, dithering the sync signal also dithers the modulator and detector unit together in a “common mode,” rather than varying the timing of each of these elements separately.
    • 具有通过光纤链路(FL)光耦合的两个QKD站(Alice和Bob)的QKD系统(10),其中Bob包括布置在Bob的控制器(CB)和调制器(MB)或检测器单元(40)之间的可变定时延迟 )。 执行设置和校准程序,其中调整延迟DL2直到建立调制器和检测器单元的时序(分别为TSB和TS42)。 延迟DL2然后固定,使得检测器单元和调制器以公共定时模式操作,如果同步信号改变则不改变。 从Alice发送到Bob的同步(同步)信号(SS)的定时TSS被调整以达到最佳的系统性能。 一旦QKD系统运行,由于同步信号可能漂移,同步信号定时TSS被抖动保持最佳的QKD系统性能。 由于调制器和检测器单元定时连接在一起,抖动同步信号也将调制器和检测器单元以“共模”方式进行抖动,而不是分别改变这些元件中的每个元件的时序。