会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Methods and apparatus for dynamically estimating the location of an oil-water interface in a petroleum reservoir
    • 用于动态估计石油储层中油水界面位置的方法和装置
    • US06182013B2
    • 2001-01-30
    • US09361031
    • 1999-07-23
    • Alberto MalinvernoDavid J. RossiMetin KarakasBrian SpiesCarlos Torres-VerdinIan BryantMin-Yi Chen
    • Alberto MalinvernoDavid J. RossiMetin KarakasBrian SpiesCarlos Torres-VerdinIan BryantMin-Yi Chen
    • G01V150
    • E21B47/042
    • Methods for locating an oil-water interface in a petroleum reservoir include taking resistivity and pressure measurements over time and interpreting the measurements. The apparatus of the invention includes sensors preferably arranged as distributed arrays. According to a first method, resistivity and pressure measurements are acquired simultaneously during a fall-off test. Resistivity measurements are used to estimate the radius of the water flood front around the injector well based on known local characteristics. The flood front radius and fall-off pressure measurements are used to estimate the mobility ratio. According to a second method, resistivity and pressure measurements are acquired at a variety of times. Prior knowledge about reservoir parameters is quantified in a probability density function (pdf). Applying Bayes' Theorem, prior pdfs are combined with measurement results to obtain posterior pdfs which quantify the accuracy of additional information. As new measurements are acquired, posterior pdfs, updated for expected temporal variations, become prior pdfs for the new measurements. According to a third method, uncertainty about the reservoir parameters is represented by Gaussian pdfs. The relationship between measurements and reservoir parameters is locally approximated by a linear function. Uncertainties are quantified by a posterior covariance matrix.
    • 在石油储层中定位油 - 水界面的方法包括随时间进行电阻率和压力测量,并解释测量。 本发明的装置包括优选地布置成分布式阵列的传感器。 根据第一种方法,在脱落测试期间同时获得电阻率和压力测量值。 电阻率测量用于基于已知的局部特征来估计喷射器周围的防洪前沿的半径。 洪水前半径和脱落压力测量用于估计移动率。 根据第二种方法,可以在多种时间获得电阻率和压力测量值。 关于储层参数的先验知识是以概率密度函数(pdf)量化的。 应用贝叶斯定理,先前的pdf与测量结果相结合,以获得后验pdf,量化附加信息的准确性。 随着新测量的获取,对于预期的时间变化更新的后验pdf将成为新测量的先前的pdf。 根据第三种方法,储层参数的不确定性由高斯pdf表示。 测量和储层参数之间的关系由线性函数局部近似。 不确定性由后验协方差矩阵量化。