会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method for sensing and estimating the shape and location of oil-water
interfaces in a well
    • 用于感测和估计井中油水界面的形状和位置的方法
    • US5767680A
    • 1998-06-16
    • US661497
    • 1996-06-11
    • Carlos Torres-VerdinSheng FangVladimir DruskinIan BryantMetin Karakas
    • Carlos Torres-VerdinSheng FangVladimir DruskinIan BryantMetin Karakas
    • E21B47/10E21B49/00G01V3/20G01L3/08G01L3/10E21B47/00
    • G01V3/20E21B47/102E21B49/00
    • Inception of hydrocarbon extraction from a reservoir causes the oil-water interface to warp and cusp toward the extraction gates along a well. This invention proposes time-lapse DC/AC measurements with an array of permanently deployed sensors in order to detect and estimate the change in geometry and proximity of the oil-water interface as a result of production, and therefore as a function of time. The estimation is carried out with a parametric inversion technique whereby the shape of the oil-water interface is assumed to take the form of a three-dimensional surface describable with only a few unknown parameters. A nonlinear optimization technique is used to search for the unknown parameters such that the differences between the measured data and the numerically simulated data are minimized in a least-squares fashion with concomitant hard bound physical constraints on the unknowns. The proposed estimation procedure is robust in the presence of relatively high levels of noise and can therefore be used to anticipate deleterious water breakthroughs, as well as improve the efficiency with which the oil is produced from the reservoir.
    • 从储层中提取烃的开始使得油 - 水界面沿井沿弯曲和尖端朝向萃取门。 本发明提出了具有永久部署的传感器阵列的延时DC / AC测量,以便检测和估计作为生产的结果的油 - 水界面的几何形状和接近度的变化,并因此作为时间的函数。 用参数反演技术进行估计,由此假设油 - 水界面的形状采取仅用几个未知参数描述的三维表面的形式。 使用非线性优化技术来搜索未知参数,使得测量数据和数值模拟数据之间的差异以最小二乘法最小化,同时伴随着未知数的硬限制物理约束。 所提出的估计程序在存在相对高的噪声水平的情况下是稳健的,因此可以用于预测有害的水突破,以及提高从储层产生油的效率。
    • 2. 发明授权
    • Methods and apparatus for dynamically estimating the location of an oil-water interface in a petroleum reservoir
    • 用于动态估计石油储层中油水界面位置的方法和装置
    • US06182013B2
    • 2001-01-30
    • US09361031
    • 1999-07-23
    • Alberto MalinvernoDavid J. RossiMetin KarakasBrian SpiesCarlos Torres-VerdinIan BryantMin-Yi Chen
    • Alberto MalinvernoDavid J. RossiMetin KarakasBrian SpiesCarlos Torres-VerdinIan BryantMin-Yi Chen
    • G01V150
    • E21B47/042
    • Methods for locating an oil-water interface in a petroleum reservoir include taking resistivity and pressure measurements over time and interpreting the measurements. The apparatus of the invention includes sensors preferably arranged as distributed arrays. According to a first method, resistivity and pressure measurements are acquired simultaneously during a fall-off test. Resistivity measurements are used to estimate the radius of the water flood front around the injector well based on known local characteristics. The flood front radius and fall-off pressure measurements are used to estimate the mobility ratio. According to a second method, resistivity and pressure measurements are acquired at a variety of times. Prior knowledge about reservoir parameters is quantified in a probability density function (pdf). Applying Bayes' Theorem, prior pdfs are combined with measurement results to obtain posterior pdfs which quantify the accuracy of additional information. As new measurements are acquired, posterior pdfs, updated for expected temporal variations, become prior pdfs for the new measurements. According to a third method, uncertainty about the reservoir parameters is represented by Gaussian pdfs. The relationship between measurements and reservoir parameters is locally approximated by a linear function. Uncertainties are quantified by a posterior covariance matrix.
    • 在石油储层中定位油 - 水界面的方法包括随时间进行电阻率和压力测量,并解释测量。 本发明的装置包括优选地布置成分布式阵列的传感器。 根据第一种方法,在脱落测试期间同时获得电阻率和压力测量值。 电阻率测量用于基于已知的局部特征来估计喷射器周围的防洪前沿的半径。 洪水前半径和脱落压力测量用于估计移动率。 根据第二种方法,可以在多种时间获得电阻率和压力测量值。 关于储层参数的先验知识是以概率密度函数(pdf)量化的。 应用贝叶斯定理,先前的pdf与测量结果相结合,以获得后验pdf,量化附加信息的准确性。 随着新测量的获取,对于预期的时间变化更新的后验pdf将成为新测量的先前的pdf。 根据第三种方法,储层参数的不确定性由高斯pdf表示。 测量和储层参数之间的关系由线性函数局部近似。 不确定性由后验协方差矩阵量化。