会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Sputter deposition for multi-component thin films
    • 多组分薄膜的溅射沉积
    • US4923585A
    • 1990-05-08
    • US266196
    • 1988-11-02
    • Alan R. KraussOrlando Auciello
    • Alan R. KraussOrlando Auciello
    • C23C14/04C23C14/46C23C14/54
    • C23C14/54C23C14/042C23C14/46Y10S505/786
    • Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams.
    • 使用单个离子束和多组分靶的离子束溅射诱导沉积能够可再现地产生任意组成的薄膜,包括接近化学计量的薄膜。 该溅射沉积方法使用石英晶体沉积监测器和计算机控制的聚焦良好的离子束,能够生产超晶格型金属氧化物超导体和半导体,例如GaAs-AlGaAs以及层状金属/氧化物/半导体/ 超导体结构。 通过根据已知的溅射产率和每种材料的所需层厚来编程每个靶的停留时间,可以将来自良好控制的亚单层的复合膜沉积到仅由可用的沉积时间确定的厚度。 在一个实施例中,离子束通过一组X-Y静电偏转板顺序指向三个或更多个不同元素或化合物靶,其是所需膜的成分。 在另一个实施例中,离子束被引导通过沉积板中的孔,并在计算机控制下移位,以提供对沉积层的高度控制。 在另一个实施例中,单个固定离子束以顺序方式被引导到多个溅射靶上,其中目标在计算机控制下各自与光束对准地移动以形成多层薄膜。 这种受控的溅射沉积方法也可以与激光和电子束一起使用。
    • 3. 发明授权
    • Ultrananocrystalline diamond cantilever wide dynamic range acceleration/vibration/pressure sensor
    • 超晶体金刚石悬臂宽动态范围加速/振动/压力传感器
    • US06613601B1
    • 2003-09-02
    • US10142814
    • 2002-05-09
    • Alan R. KraussDieter M. GruenMichael J. PellinOrlando Auciello
    • Alan R. KraussDieter M. GruenMichael J. PellinOrlando Auciello
    • H01L2100
    • G01H9/00B82Y35/00G01D5/30G01H11/06G01L1/005G01L1/044G01P15/0888G01P15/0894G01P15/093Y10S977/732Y10S977/932
    • An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/V2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.
    • 在一个高灵敏度的超小型传感器中,采用悬臂结构形成的超微晶金刚石(UNCD)元件用于在宽动态范围内测量加速度,冲击,振动和静压力。 悬臂UNCD元件可以与单个阳极组合使用,测量光学或电容测量。 在另一个实施例中,悬臂UNCD元件设置在两个阳极之间,其中DC电压施加到两个阳极。 通过施加到UNCD悬臂元件上的小的AC调制电压,并且由于Fowler-Nordheim方程中所施加的电压和阳极 - 阴极间隙距离的对称性,维持指定的所需的阳极电压比V1 / V2的任何变化 电流比精确匹配UNCD悬臂元件的任何位移与平衡。 通过测量维持指定电流比所需的阳极电压比的变化,可以精确地确定UNCD悬臂的偏转。 通过适当地调制在UNCD悬臂与两个阳极之间施加的电压或极限电极,可以精确地独立测量压力,单轴加速度,振动和冲击。 本发明还考虑了用于制造用于传感器的悬臂UNCD结构的方法。
    • 4. 发明授权
    • Ultrananocrystalline diamond cantilever wide dynamic range acceleration/vibration/pressure sensor
    • 超晶体金刚石悬臂宽动态范围加速/振动/压力传感器
    • US06422077B1
    • 2002-07-23
    • US09543992
    • 2000-04-06
    • Alan R. KraussDieter M. GruenMichael J. PellinOrlando Auciello
    • Alan R. KraussDieter M. GruenMichael J. PellinOrlando Auciello
    • G01P1508
    • G01H9/00B82Y35/00G01D5/30G01H11/06G01L1/005G01L1/044G01P15/0888G01P15/0894G01P15/093Y10S977/732Y10S977/932
    • An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/N2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.
    • 在一个高灵敏度的超小型传感器中,采用悬臂结构形成的超微晶金刚石(UNCD)元件用于在宽动态范围内测量加速度,冲击,振动和静压力。 悬臂UNCD元件可以与单个阳极组合使用,测量光学或电容测量。 在另一个实施例中,悬臂UNCD元件设置在两个阳极之间,其中DC电压施加到两个阳极。 通过施加到UNCD悬臂元件的小的AC调制电压,并且由于Fowler-Nordheim方程中施加的电压和阳极 - 阴极间隙距离的对称性,维持指定的阳极电压比V1 / N2的任何变化 电流比精确匹配UNCD悬臂元件的任何位移与平衡。 通过测量维持指定电流比所需的阳极电压比的变化,可以精确地确定UNCD悬臂的偏转。 通过适当地调制在UNCD悬臂与两个阳极之间施加的电压或极限电极,可以精确地独立测量压力,单轴加速度,振动和冲击。 本发明还考虑了用于制造用于传感器的悬臂UNCD结构的方法。
    • 7. 发明申请
    • Method to grow pure nanocrystalline diamond films at low temperatures and high deposition rates
    • 在低温和高沉积速率下生长纯纳米晶金刚石薄膜的方法
    • US20050031785A1
    • 2005-02-10
    • US10892736
    • 2004-07-15
    • John CarlisleDieter GruenOrlando AucielloXingcheng Xiao
    • John CarlisleDieter GruenOrlando AucielloXingcheng Xiao
    • C23C16/27C23C16/00B32B9/00
    • C23C16/274C23C16/277Y10T428/30
    • A method of depositing nanocrystalline diamond film on a substrate at a rate of not less than about 0.2 microns/hour at a substrate temperature less than about 500° C. The method includes seeding the substrate surface with nanocrystalline diamond powder to an areal density of not less than about 1010sites/cm2, and contacting the seeded substrate surface with a gas of about 99% by volume of an inert gas other than helium and about 1% by volume of methane or hydrogen and one or more of acetylene, fullerene and anthracene in the presence of a microwave induced plasma while maintaining the substrate temperature less than about 500° C. to deposit nanocrystalline diamond on the seeded substrate surface at a rate not less than about 0.2 microns/hour. Coatings of nanocrystalline diamond with average particle diameters of less than about 20 nanometers can be deposited with thermal budgets of 500° C.-4 hours or less onto a variety of substrates such as MEMS devices.
    • 在衬底温度小于约500℃下以不小于约0.2微米/小时的速度在衬底上沉积纳米晶金刚石膜的方法。该方法包括将纳米晶体金刚石粉末的衬底表面接种到不是 小于约10 <10个位点/ cm 2,并且使接种的底物表面与约99体积%的除氦和约1体积%的甲烷或氢气之外的惰性气体和一个或多个 的乙炔,富勒烯和蒽在微波诱导的等离子体的存在下,同时保持衬底温度低于约500℃,以便以​​不小于约0.2微米/小时的速率将纳米晶体金刚石沉积在接种的衬底表面上。 平均粒径小于约20纳米的纳米晶体金刚石的涂层可以以500℃-4小时以下的热预算沉积到诸如MEMS器件的各种基板上。