会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Crystal growth method for gallium nitride films
    • 氮化镓薄膜的晶体生长方法
    • US5843227A
    • 1998-12-01
    • US782075
    • 1997-01-13
    • Akitaka KimuraHaruo SunakawaMasaaki NidoAtsushi Yamaguchi
    • Akitaka KimuraHaruo SunakawaMasaaki NidoAtsushi Yamaguchi
    • C30B29/38C30B25/02C30B25/18H01L21/205H01L33/16H01L33/32H01S5/00H01S5/323
    • C30B25/02C30B25/18C30B29/406
    • A crystal growth method for growing on a gallium arsenide (GaAs) substrate a gallium nitride (GaN) film which is good in surface flatness and superior in crystallinity. According to the method, a GaAs substrate having a surface which is inclined with respect to the GaAs(100) face is used. The inclination angle of the substrate surface is larger than 0 degree but smaller than 35 degrees with respect to the GaAs(100) face. The inclination direction of the substrate surface is within a range of an angular range from the �0,0,1! direction of GaAs to the �0,-1,0! direction past the �0,-1,1! direction and angles less than 5 degrees on opposite sides of the angular range around an �1,0,0! direction of gallium arsenide taken as an axis, or within another range crystallographically equivalent to the range. The GaN layer is formed on the surface of the GaAs substrate preferably by hydride vapor deposition method.
    • 一种晶体生长方法,用于在砷化镓(GaAs)衬底上生长表面平坦度好并且结晶度优异的氮化镓(GaN)膜。 根据该方法,使用具有相对于GaAs(100)面倾斜的表面的GaAs衬底。 衬底表面的倾斜角度相对于GaAs(100)面大于0度但小于35度。 衬底表面的倾斜方向在从GaAs的[0,0,1]方向到[0,-1,1]方向的[0,-1,0]方向的角度范围的范围内,以及 在作为轴的砷化镓的[1,0.0]方向的角度范围的相对侧的角度小于5度,或在与该范围相似的等距范围内的角度。 优选通过氢化物气相沉积法在GaAs衬底的表面上形成GaN层。
    • 4. 发明授权
    • Multiple quantum well semiconductor laser
    • 多量子阱半导体激光器
    • US5559820A
    • 1996-09-24
    • US499661
    • 1995-07-07
    • Akitaka KimuraMasaaki NidoAkihisa TomitaAkira Suzuki
    • Akitaka KimuraMasaaki NidoAkihisa TomitaAkira Suzuki
    • H01S5/00H01S5/042H01S5/183H01S5/22H01S5/227H01S5/32H01S5/34H01S3/19
    • B82Y20/00H01S5/2275H01S5/0424H01S5/2205H01S5/3211H01S5/3415H01S5/3428
    • A stripe structure including an MQW active layer has a width equal to or smaller than twice the diffusion length of holes, and a p type semiconductor layer for injecting holes into the MQW active layer is formed on both sides of the stripe structure in contact with the sides of the stripe structure. Even when any MQW structure is used as the MQW active layer in order to reduce the temperature dependency of the threshold current, holes are injected into QW layers from the p type semiconductor layer which is in direct contact with all the QW layers in the MQW active layer, so that no local presence of holes in some QW layers occurs. Since the width of the stripe structure is equal to or smaller than twice the diffusion length of holes, the holes are uniformly injected in the direction parallel to the QW surface. That is, it is possible to improve the MQW active layer, while avoiding the local presence of holes, to reduce the temperature dependency of the threshold current which is accompanied with the local presence of holes in the conventional structure. This structure can reduce the temperature dependency of the threshold current of a semiconductor laser.
    • 包括MQW有源层的条纹结构的宽度等于或小于孔的扩散长度的两倍,并且用于将空穴注入MQW有源层的ap型半导体层形成在条形结构的与侧面接触的两侧 的条纹结构。 即使使用任何MQW结构作为MQW有源层,为了降低阈值电流的温度依赖性,也可以将空穴从与MQW有源的所有QW层直接接触的p型半导体层注入QW层 层,使得在一些QW层中不存在空穴的局部存在。 由于条形结构的宽度等于或小于孔的扩散长度的两倍,所以孔在平行于QW表面的方向上被均匀地注入。 也就是说,可以改善MQW有源层,同时避免空穴的局部存在,以降低伴随常规结构中局部存在孔的阈值电流的温度依赖性。 该结构可以降低半导体激光器的阈值电流的温度依赖性。
    • 6. 发明授权
    • Refractive index control optical semiconductor device
    • 折射率控制光半导体器件
    • US5425042A
    • 1995-06-13
    • US259436
    • 1994-06-14
    • Masaaki NidoAkitaka Kimura
    • Masaaki NidoAkitaka Kimura
    • G02F1/025G02F1/017H01S5/00H01S5/062H01S3/106H01S3/18
    • B82Y20/00G02F1/01708H01S5/06206
    • A refractive index control optical semiconductor device includes a semiconductor p-n junction structure, and a refractive index control semiconductor layer. The semiconductor p-n junction structure outputs light with a forward current. The refractive index control semiconductor layer is formed on a semiconductor substrate, is stacked on the semiconductor p-n junction structure to constitute an optical waveguide, causes a refractive index change of light to occur by carrier injection, and includes a multi-quantum well structure formed by alternately stacking a semiconductor quantum well layer and a barrier layer having a bandgap larger than that of the semiconductor quantum well layer at a plurality of periods. The semiconductor quantum well layer has a lattice constant smaller than that of the semiconductor substrate. The thickness of the semiconductor quantum well layer is set such that a lowest heavy hole sub-band and a lowest light hole sub-band of the semiconductor quantum well layer have nearly the same energy at a .GAMMA.-point in a wave number space.
    • 折射率控制光半导体器件包括半导体p-n结结构和折射率控制半导体层。 半导体p-n结结构以正向电流输出光。 折射率控制半导体层形成在半导体衬底上,堆叠在半导体pn结结构上以构成光波导,通过载流子注入引起光的折射率变化,并且包括由多个量子阱结构形成的多量子阱结构 在多个周期交替堆叠半导体量子阱层和具有比半导体量子阱层的带隙大的带隙的势垒层。 半导体量子阱层的晶格常数小于半导体衬底的晶格常数。 半导体量子阱层的厚度被设定为使得半导体量子阱层的最低重孔子带和最低的光孔子带在波数空间中的GAMMA点处具有几乎相同的能量。