会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明申请
    • METHOD AND SYSTEM FOR CONCURRENT EVENT FORECASTING
    • 同步事件预测的方法和系统
    • US20110099136A1
    • 2011-04-28
    • US12604606
    • 2009-10-23
    • Leandro G. BarajasYoungkwan ChoNarayan Srinivasa
    • Leandro G. BarajasYoungkwan ChoNarayan Srinivasa
    • G06N3/12
    • G06N3/02G06F17/18G06K9/00496G06K9/6251
    • A method and system for characterizing, detecting, and predicting or forecasting multiple target events from a past history of these events includes compressing temporal data streams into self-organizing map (SOM) clusters, and determining trajectories of the temporal streams via the clusters to predict the multiple target events. The system includes an evolutionary multi-objective optimization (EMO) module for processing the temporal data streams, which are obtained from a plurality of heterogeneous domains; a SOM module for characterizing the temporal data streams into self-organizing map clusters; and a target event prediction (TEP) module for generating prediction models of the map clusters. The SOM module employs a vector quantization method that places a set of vectors on a low-dimensional grid in an ordered fashion. The prediction models each include trajectories of the temporal data streams, and the system predicts the multiple target events using the trajectories.
    • 用于从这些事件的过去历史表征,检测和预测或预测多个目标事件的方法和系统包括将时间数据流压缩为自组织映射(SOM)集群,以及通过集群确定时间流的轨迹以预测 多个目标事件。 该系统包括用于处理从多个异构域获得的时间数据流的进化多目标优化(EMO)模块; 用于将时间数据流表征为自组织映射簇的SOM模块; 以及用于生成地图簇的预测模型的目标事件预测(TEP)模块。 SOM模块采用矢量量化方法,其以有序的方式将一组向量放置在低维度网格上。 预测模型各自包括时间数据流的轨迹,并且系统使用轨迹来预测多个目标事件。
    • 7. 发明授权
    • System for temporal prediction
    • 时间预测系统
    • US07797259B2
    • 2010-09-14
    • US11786949
    • 2007-04-12
    • Qin JiangNarayan Srinivasa
    • Qin JiangNarayan Srinivasa
    • G06E1/00
    • G06N3/0436
    • Described is a system for temporal prediction. The system includes an extraction module, a mapping module, and a prediction module. The extraction module is configured to receive X(1), . . . X(n) historical samples of a time series and utilize a genetic algorithm to extract deterministic features in the time series. The mapping module is configured to receive the deterministic features and utilize a learning algorithm to map the deterministic features to a predicted {circumflex over (x)}(n+1) sample of the time series. Finally, the prediction module is configured to utilize a cascaded computing structure having k levels of prediction to generate a predicted {circumflex over (x)}(n+k) sample. The predicted {circumflex over (x)}(n+k) sample is a final temporal prediction for k future samples.
    • 描述了一种用于时间预测的系统。 该系统包括提取模块,映射模块和预测模块。 提取模块被配置为接收X(1),。 。 。 X(n)时间序列的历史样本,并利用遗传算法提取时间序列中的确定性特征。 映射模块被配置为接收确定性特征并利用学习算法来将确定性特征映射到时间序列的预测{(x)}(n + 1)样本。 最后,预测模块被配置为利用具有k个预测级别的级联计算结构来生成预测的(x(x)}(n + k)个样本。 预测的({x}}(n + k)样本的回归是k个未来样本的最终时间预测。
    • 8. 发明授权
    • Method and apparatus for illumination compensation of digital images
    • 数字图像照明补偿的方法和装置
    • US07787709B2
    • 2010-08-31
    • US11541711
    • 2006-09-29
    • Narayan Srinivasa
    • Narayan Srinivasa
    • G06K9/32G06K9/40G06K9/36
    • G06T5/40G06T5/008G06T2207/20012G06T2207/30252
    • A method for enhancing the quality of a digital image by using a single user-defined parameter. A virtual image is created based on the single user-defined parameter and the original digital image. An adaptive contrast enhancement algorithm operates on a logarithmically compressed version of the virtual image to produce adaptive contrast values for each pixel in the virtual image. A dynamic range adjustment algorithm is used to generate logarithmic enhanced pixels based on the adaptive contrast values and the pixels of the logarithmically compressed version of the virtual image. The logarithmic enhanced pixels are exponentially expanded and scaled to produce a compensated digital image.
    • 一种通过使用单个用户定义的参数来增强数字图像的质量的方法。 基于单个用户定义的参数和原始数字图像创建虚拟图像。 自适应对比度增强算法对虚拟图像的对数压缩版本进行操作,以为虚拟图像中的每个像素产生自适应对比度值。 动态范围调整算法用于基于自适应对比度值和虚拟图像的对数压缩版本的像素来生成对数增强像素。 对数增强像素以指数方式扩展和缩放以产生补偿数字图像。
    • 10. 发明授权
    • Method for characterization, detection and prediction for target events
    • 用于目标事件的表征,检测和预测的方法
    • US07292960B1
    • 2007-11-06
    • US11427825
    • 2006-06-30
    • Narayan SrinivasaQin JiangLeandro G. Barajas
    • Narayan SrinivasaQin JiangLeandro G. Barajas
    • G06F17/40G06F17/00G06F19/00
    • G06Q50/22G06Q10/06
    • A method for characterizing, detecting and predicting an event of interest, a target event, based on temporal patterns useful for predicting a probable occurrence of the target event is disclosed. Measurable events and their features are defined and quantized into event classes. Temporal series of the event classes are analyzed, and preliminary prediction rules established by analyzing temporal patterns of the event classes that precede an occurrence of the target event using a sliding time window. The quality of the preliminary prediction rules is evaluated and parameters thereof are optimized by using a defined fitness function, thereby defining finalized prediction rules. The finalized prediction rules are then made available for application on temporal series of the event classes to forecast a probable occurrence of the target event.
    • 公开了一种用于表征,检测和预测感兴趣事件的方法,基于用于预测目标事件的可能出现的时间模式的目标事件。 可测量事件及其特征被定义和量化为事件类。 分析事件类的时间序列,并通过使用滑动时间窗口分析在事件发生之前的事件类的时间模式来建立初步预测规则。 评估初步预测规则的质量,并通过使用定义的适应度函数来优化其参数,从而定义最终预测规则。 然后,最终确定的预测规则可用于事件类别的时间序列上的应用以预测目标事件的可能发生。