会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Hard corneal contact lens
    • US11243413B2
    • 2022-02-08
    • US16495053
    • 2017-05-28
    • Bo-Yan Shi
    • Bo-Yan ShiMei-Li Huang
    • G02C7/04
    • A rigid corneal contact lens comprises a front-surface optical zone and a back-surface optical zone: the front-surface optical zone comprises a front-surface central zone (1) and a defocusing zone (2) at the periphery of the front-surface central zone (1); the front-surface central zone (1) is spherical; the defocusing zone (2) has a radius of curvature decreasing from the outside of the front-surface central zone (1) continuously and a minimum radius of curvature which ranges from 95% to 50% of the radius of curvature of the front-surface central zone (1). Because of the structure of a human eye, the phenomenon of peripheral hyperopic defocus exist in human eyes, that is, central image points for an image are projected on macula foveal of retina and peripheral image points are projected behind retina. As shown in experimental evidences, peripheral hyperopic defocus is the main cause of myopia development which can be moderated by restraining peripheral hyperopic defocus. In this present disclosure, a rigid corneal contact lens featuring stronger refractive power at the lens's periphery than at the lens's central area contributes to moderating peripheral hyperopic defocus for myopia control.
    • 2. 发明申请
    • HARD CORNEAL CONTACT LENS
    • US20200341297A1
    • 2020-10-29
    • US16495053
    • 2017-05-28
    • Bo-Yan Shi
    • Bo-Yan ShiMei-Li Huang
    • G02C7/04
    • A rigid corneal contact lens comprises a front-surface optical zone and a back-surface optical zone: the front-surface optical zone comprises a front-surface central zone (1) and a defocusing zone (2) at the periphery of the front-surface central zone (1); the front-surface central zone (1) is spherical; the defocusing zone (2) has a radius of curvature decreasing from the outside of the front-surface central zone (1) continuously and a minimum radius of curvature which ranges from 95% to 50% of the radius of curvature of the front-surface central zone (1). Because of the structure of a human eye, the phenomenon of peripheral hyperopic defocus exist in human eyes, that is, central image points for an image are projected on macula foveal of retina and peripheral image points are projected behind retina. As shown in experimental evidences, peripheral hyperopic defocus is the main cause of myopia development which can be moderated by restraining peripheral hyperopic defocus. In this present disclosure, a rigid corneal contact lens featuring stronger refractive power at the lens's periphery than at the lens's central area contributes to moderating peripheral hyperopic defocus for myopia control.
    • 6. 发明申请
    • SWITCH TESTING CIRCUIT
    • 开关测试电路
    • US20110254556A1
    • 2011-10-20
    • US12820081
    • 2010-06-21
    • YAN SHI
    • YAN SHI
    • G01R31/02
    • G01R31/3277G01R31/025
    • A switch testing circuit is configured for testing a switch. The switch testing circuit includes a switch element, a first light emitting diode, and a control chip. The first light emitting diode, the switch element, and the switch are connected in series. The first light emitting diode is configured for indicating connection condition between the switch and the switch testing circuit. The control chip is configured for acquiring a voltage from one terminal of the switch element and comparing the acquired voltage with a comparison voltage to judge whether the switch is qualified or disqualified according to the comparison result.
    • 开关测试电路被配置用于测试开关。 开关测试电路包括开关元件,第一发光二极管和控制芯片。 第一发光二极管,开关元件和开关串联连接。 第一发光二极管被配置用于指示开关和开关测试电路之间的连接状态。 控制芯片被配置为从开关元件的一个端子获取电压,并将所获取的电压与比较电压进行比较,以根据比较结果判断开关是合格的还是不合格的。
    • 8. 发明申请
    • ADJUSTABLE LENS SYSTEM FOR REAL-TIME APPLICATIONS
    • 可调镜头系统实时应用
    • US20100259832A1
    • 2010-10-14
    • US12742658
    • 2008-12-10
    • Jan Frederik SuijverChristopher Stephen HallAnna Teresa FernandezStein KuiperYan Shi
    • Jan Frederik SuijverChristopher Stephen HallAnna Teresa FernandezStein KuiperYan Shi
    • G02B3/14
    • G02B3/14
    • An adjustable fluid type lens system is provided that allows e.g. ultrasound imaging through the lens during adjustment of the lens. The lens includes a container enclosing two immiscible fluids, e.g. water and oil, being in contact with each other at an interface. Incoming waves are then refracted at this interface. The shape of the interface, and thereby the refraction property, is adjustable by adjusting a voltage applied to the lens. The two fluids are selected such that they together exhibit a mechanical damping which is critical or near critical. A control circuit generates the electric voltage for adjusting the refraction from one value to another, the control circuit being arranged to change the electric voltage such that a rate of voltage change is limited to avoid oscillation of the interface, thereby adjusting refraction of incoming waves at the interface in a continuous manner. This makes it possible to use the lens while it is during adjustment from one refraction value to another, since the interface shape will at all time during the adjustment have a controlled shape. The voltage can be either a continuous voltage or a discrete stepwise (digital) voltage which is just controlled with respect to step size and temporal extension of the steps. The lens system has a number of applications e.g. within the medical field, e.g. for ‘on the fly’ high speed ultrasound imaging, or for ultrasound ablation applications where ablation can be performed during adjustment of the lens to follow a pre-defined trajectory.
    • 提供了一种可调节流体型透镜系统, 超声波成像通过透镜在调整镜片期间。 透镜包括容纳两个不混溶流体的容器,例如 水和油在界面处彼此接触。 然后在这个界面折射出来的波。 通过调节施加到透镜上的电压来调节界面的形状以及由此的折射特性。 选择两种流体使得它们一起显示出关键或近临界的机械阻尼。 控制电路产生用于将折射率从一个值调整到另一个值的电压,控制电路被布置成改变电压,使得电压变化率被限制以避免界面的振荡,由此调节入射波的折射 界面以连续的方式。 这使得可以在从一个折射值到另一个折射值的调整期间使用透镜,因为在调节期间的所有时间的界面形状都具有受控的形状。 电压可以是连续电压或离散的逐步(数字)电压,其仅仅相对于步长的步长和时间延长而被控制。 透镜系统具有许多应用,例如, 在医疗领域内。 用于“飞行”高速超声成像,或用于超声消融应用,其中可以在镜片调节期间遵循预定义的轨迹进行消融。