会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Photonic crystals
    • 光子晶体
    • US07359605B2
    • 2008-04-15
    • US10474073
    • 2002-03-26
    • Walter Heitmann
    • Walter Heitmann
    • G02B6/10
    • C03C10/00B82Y20/00C30B5/00C30B29/60G02B6/1225
    • A photonic crystal is a three-dimensional dielectric structure which is opaque to electro-magnetic radiation within a given wavelength irrespective of the direction of incidence. The photonic crystal may include, for instance, a matrix-type arrangement of free-standing dielectric micro-columns or cylinders having small diameters. The micro-columns or cylinders are placed on a substrate whose thermal expansion coefficient between 60° C. and 85° C. is at least 50% lower than the thermal expansion coefficients of quartz glass, enabling the thermal expansion of the substrate to be kept to a minimum even when high temperature variations occur. The distance between the micro-columns supported by the substrate or the microcylinders of the photonic crystal varies only to a small amount. The optical characteristics are essentially more stable than those of photonic crystals with a quartz glass substrate. Glass ceramics or, for example, Zerodur® may be used as a substrate.
    • 光子晶体是三维电介质结构,其对于给定波长内的电磁辐射是不透明的,而与入射方向无关。 光子晶体可以包括例如具有小直径的独立电介质微柱或圆柱体的矩阵型布置。 微柱或圆柱体放置在基底上,其热膨胀系数在60℃和85℃之间比石英玻璃的热膨胀系数低至少50%,使得能够保持基底的热膨胀 即使发生高温变化,也达到最小值。 由基板或光子晶体的微圆柱支撑的微柱之间的距离仅变化很小。 光学特性基本上比具有石英玻璃衬底的光子晶体更稳定。 玻璃陶瓷或例如Zerodur可以用作基底。
    • 6. 发明授权
    • Glass for optical waveguides or the like
    • 用于光波导的玻璃等
    • US06490399B1
    • 2002-12-03
    • US09403476
    • 2000-07-11
    • Walter HeitmannKarl-Friedrich Klein
    • Walter HeitmannKarl-Friedrich Klein
    • G02B600
    • C03C4/0071C03C3/06C03C2201/06C03C2201/31G02B6/02
    • Optical waveguides made of quartz glass with reduced infrared absorption and reduced attenuation coefficients are made of glass material composed of atoms having mass numbers higher than that of the natural isotope distribution. The quartz glass or doped quartz glass is made of silicon atoms, of which most or all have the mass numbers 29 and/or 30, as well as of oxygen atoms, of which most or all are composed of isotopes with the mass numbers 17 and/or 18. Atoms of the 76Ge isotope are preferably used for doping with germanium atoms having higher mass numbers than in the natural isotope mixture. Glass with atoms of preferably 30Si and/or 18O are preferably used for optical waveguides based on quartz glass having attenuation coefficients below 0.15 dB/km. As indicated, such optical waveguides are also suitable for transmitting high-energy, pulsed or continuous laser light in a wavelength range from 2.0 to 3.0 &mgr;m. These optical waveguides are also suitable for transmitting holmium laser light at 2.1 &mgr;m and Er laser light with a wavelength of 2.79 and 2.94 &mgr;m.
    • 由石英玻璃制成的光波导具有降低的红外吸收和减小的衰减系数由由质子数高于天然同位素分布的原子组成的玻璃材料制成。 石英玻璃或掺杂的石英玻璃由硅原子制成,其大部分或全部具有质量数29和/或30以及氧原子,其中大部分或全部由质量数17的同位素组成, /或18.76Ge同位素的原子优选用于掺杂质子数高于天然同位素混合物的锗原子。 具有优选30Si和/或18O原子的玻璃优选用于基于衰减系数低于0.15dB / km的石英玻璃的光波导。 如所指出的,这种光波导也适用于在2.0-3.0μm的波长范围内传输高能,脉冲或连续的激光。 这些光波导也适用于传输波长为2.79和2.94 mum的2.1 mum的钬激光和Er激光。
    • 7. 发明授权
    • Optical connection
    • 光连接
    • US6041156A
    • 2000-03-21
    • US143132
    • 1998-08-28
    • Walter Heitmann
    • Walter Heitmann
    • G02B6/26G02B6/42G02B6/00
    • G02B6/4204G02B6/26
    • An optical connection between optical fibers and an optical window exhibits improved long-term stability and improved measuring accuracy due to substantial transmission constancy. The surface of the optical window is coated with a thin, absorption-free coating of very hard material, thereby substantially improving the scratch resistance. The thickness of the protective coating is sized so that interfering reflection losses caused by differences in refraction indices may be avoided. The hardness of the protective coating is greater than that of the material of the optical window and its optical thickness is small in relation to the operating wavelength. The coating may be applied using ion-based, ion-beam dispersion, or microplasma methods.
    • 光纤和光学窗口之间的光学连接表现出改善的长期稳定性和改进的测量精度,这是由于实质的传输稳定性。 光学窗口的表面涂覆有非常硬的材料的薄的无吸收涂层,从而显着地改善耐擦伤性。 保护涂层的厚度的尺寸使得可以避免由折射率差引起的干涉反射损失。 保护涂层的硬度大于光学窗口材料的硬度,其光学厚度相对于工作波长较小。 涂层可以使用离子型,离子束分散或微质等方法进行。
    • 8. 发明授权
    • Heater autotone control apparatus and method
    • 加热器自动调节装置及方法
    • US5291514A
    • 1994-03-01
    • US731112
    • 1991-07-15
    • Walter HeitmannDavid Waters
    • Walter HeitmannDavid Waters
    • F27B9/40F27D99/00G05D23/22H05B3/64
    • F27D99/0006F27B9/40G05D23/1934G05D23/22
    • A method and apparatus for automatically and dynamically tuning individual heater segments of a multi-zone furnace which allows simultaneous minimization of temperature gradients within the furnace and prevention of premature aging and failure of the segments by controlling the relative temperatures thereof and equalization of the contributions of the segments to the heating of the furnace. Furnace and heater temperatures are monitored and furnace temperatures are used to develop set point biases for automatic control of heater segment temperatures. Some segments are also controlled as a function of power applied to other segments. Temperatures sensed within the furnace are combined such as by averaging to effectively provide virtual sensors in locations where sensors cannot otherwise be practically provided.
    • 一种用于自动和动态地调整多区域炉的各个加热器段的方法和装置,其允许同时最小化炉内的温度梯度并通过控制段的相对温度和分配的均匀性来防止段的过早老化和失效 炉子加热段。 监测炉子和加热器温度,并使用炉温来开发用于自动控制加热器段温度的设定点偏差。 一些段也作为施加到其他段的功率的函数来控制。 在炉内感测到的温度通过平均来组合,以便在不能实际提供传感器的位置有效地提供虚拟传感器。
    • 10. 发明授权
    • Method using photonic crystals for the dispersion compensation of optical signals of different wavelengths which are transmitted together
    • 使用光子晶体对不同波长的光信号进行色散补偿的方法一起传输
    • US06760513B1
    • 2004-07-06
    • US09937579
    • 2001-12-20
    • Walter HeitmannHans W. P. Koops
    • Walter HeitmannHans W. P. Koops
    • G02B634
    • G02B6/29394B82Y20/00G02B6/12007G02B6/1225H04B10/25133
    • The present invention is directed to an economical approach for compensating for the dispersion of optical signals having different wavelengths. In accordance with the present invention, photonic crystals (K1-Kn) are positioned on a common optical waveguide (2). In this context, each photonic crystal (K1-Kn) is tuned to reflect or deflect the signals of one wavelength and to transmit the signals of other wavelengths, unattenuated. The specific arrangement of the photonic crystals (K1-Kn) on the waveguide (2) and the specific arrangement of the deflecting elements in the photonic crystal are defined, in the process, as a function of the dispersion to be compensated for between the individual wavelengths. The approach of the present invention makes it possible to assemble permanently set or controllable photonic dispersion compensators of a high quality, which are approximately 1000 times shorter than conventional diffraction gratings.
    • 本发明涉及用于补偿具有不同波长的光信号的色散的经济方法。根据本发明,光子晶体(K1-Kn)位于公共光波导(2)上。 在这种情况下,每个光子晶体(K1-Kn)被调谐以反射或偏转一个波长的信号并且传输其它波长的信号,而不是衰减的。 光子晶体(K1-Kn)在波导(2)上的具体布置以及光子晶体中的偏转元件的具体布置被定义为在该过程中作为待个体之间补偿的色散的函数 本发明的方法使得可以组装高质量的永久设置或可控的光子色散补偿器,其比常规衍射光栅近约1000倍。