会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Quantum-effect semiconductor devices
    • 量子效应半导体器件
    • US5113231A
    • 1992-05-12
    • US404148
    • 1989-09-07
    • Jan R. SoderstromThomas C. McGill
    • Jan R. SoderstromThomas C. McGill
    • H01L29/205H01L29/737H01L29/88
    • H01L29/7376H01L29/205H01L29/882
    • A novel combination of semiconductor heterojunctions provide a quantum-effect device with resonant or enhanced transmission of electrons (or holes) due to tunneling into a quantum well state in the valence (or conduction) band. A particular heterostructure comprising sequentially grown layers of indium arsenide, aluminum antimonide, gallium antimonide, aluminum antimonide and indium arsenide, permits electrons tunneling from the indium arsenide conduction band through the aluminum antimonide barrier into a sub-band level in the valence band quantum well of the gallium antimonide. This particular embodiment produced a current-voltage characteristic with negative differential resistance and a peak-to-valley current ratio of about 20 at room temperature and 88 at liquid nitrogen temperature. The present invention can be used either as a two-contact device such as a diode or a three-contact device such as a transistor.
    • 半导体异质结的新颖组合提供了量子效应器件,其由于在价(或导电)带中的隧道进入量子阱状态而具有谐振或增强的电子(或空穴)透射。 包括依次生长的砷化铟,锑酸锑,锑化锑,锑化锑和砷化铟的特定异质结构允许电子从铟砷化物导带穿过锑化铝屏障穿过价带的量子阱中的子带水平 锑镓。 该特定实施例产生具有负差分电阻的电流 - 电压特性和在室温下约20的峰谷电流比,在液氮温度下为88。 本发明可以用作诸如二极管的双接触器件或诸如晶体管的三触点器件。
    • 6. 发明授权
    • Method for fabricating transistorless, multistable current-mode memory
cells and memory arrays
    • 用于制造无晶体管,多电流电流模式存储器单元和存储器阵列的方法
    • US6015738A
    • 2000-01-18
    • US972118
    • 1997-11-17
    • Harold J. LevyThomas C. McGill
    • Harold J. LevyThomas C. McGill
    • G11C11/39G11C11/56H01L27/102H01L21/8246
    • H01L27/1021G11C11/39G11C11/56G11C2211/5614Y10S438/979
    • A transistorless memory cell for storing information as one of two possible bistable current states comprises (i) at least one first transistorless device exhibiting N-type negative differential resistance, including a high-impedance region, a low-impedance region and a negative-resistance region and having a polarity and (ii) at least one second transistorless device exhibiting an exponential or linear current-voltage characteristic and coupled to the first transistorless device. The read/write operation of the transistorless memory cell is performed in a current mode. A method for fabricating a self-aligned, three-dimensional structure of memory cells comprises the steps of (i) forming a first conducting layer, (ii) forming a first semiconductor layer above the first conducting layer, (iii) forming a second semiconductor layer above the first semiconductor layer, (iv) patterning the second semiconductor layer, (v) etching the second semiconductor layer, the first semiconductor layer and the first conducting layer, (vi) forming a second conducting layer above the second semiconductor layer, (vii) patterning and etching the second conducting layer, and (viii) etching the second semiconductor layer using the second conducting layer as a mask to form multiple semiconducting devices of a second kind, and etching the first semiconductor layer using the second conducting layer as a mask to form multiple semiconducting devices of a first kind.
    • 用于将信息存储为两个可能的双稳电流状态之一的无晶体管存储单元包括:(i)至少一个具有N型负差分电阻的第一无晶体管器件,包括高阻抗区域,低阻抗区域和负电阻 区域并具有极性,以及(ii)呈现指数或线性电流 - 电压特性并耦合到第一无晶体管器件的至少一个第二无晶体管器件。 无电晶体管存储单元的读/写操作在当前模式下执行。 一种用于制造存储单元的自对准三维结构的方法包括以下步骤:(i)形成第一导电层,(ii)在第一导电层上形成第一半导体层,(iii)形成第二半导体 (iv)图案化第二半导体层,(v)蚀刻第二半导体层,第一半导体层和第一导电层,(vi)在第二半导体层上形成第二导电层( vii)图案化和蚀刻第二导电层,以及(viii)使用第二导电层作为掩模蚀刻第二半导体层以形成第二种导电层的多个半导体器件,并且使用第二导电层作为第一导电层来蚀刻第一半导体层 掩模以形成第一类的多个半导体器件。
    • 7. 发明授权
    • High power devices based on gallium nitride and aluminum gallium nitride
semiconductor heterostructures
    • 基于氮化镓和氮化镓铝半导体异质结构的大功率器件
    • US6144045A
    • 2000-11-07
    • US285484
    • 1999-04-02
    • Zvonimir Z. BandicEric C. PiquetteThomas C. McGill
    • Zvonimir Z. BandicEric C. PiquetteThomas C. McGill
    • H01L29/201H01L29/205H01L29/74H01L29/87
    • H01L29/87H01L29/201H01L29/205H01L29/74
    • High power thyristor-type devices comprising a first layer of p-type doped semiconductor alloy aluminum gallium nitride, a second layer of n-type doped aluminum gallium nitride with lower aluminum content than the first layer, a third layer of p-type doped aluminum gallium nitride with a higher aluminum content than the second layer, and a fourth layer of aluminum gallium nitride of n-type doping. The difference in hole and electron energies (band offsets) across the interface between aluminum gallium nitride and gallium nitride are such that hole and electron transfer are enhanced from aluminum gallium nitride to gallium nitride, or hole and electron transfer are suppressed from gallium nitride to aluminum gallium nitride. Aluminum content in layers 1 and 2 is chosen such that hole transfer in the forward biased conduction state of the device is enhanced, and suppressed in the reverse biased blocking state of the device. Aluminum content in layers 2 and 3 is chosen such that hole transfer in the forward biased blocking state of the device is suppressed, which reduces leakage current and enhances hole transfer into layer 2 when the device is changing from the forward biased blocking state to the forward biased conduction state. Triggering of the device may be provided by a gate contact to the third layer. Various exemplary embodiments are disclosed.
    • 大功率晶闸管型器件包括第一层p型掺杂半导体合金氮化铝镓,具有比第一层低的铝含量的n型掺杂的氮化铝镓的第二层,第三层p型掺杂的铝 具有比第二层高的铝含量的氮化镓,以及n型掺杂的第四层氮化镓铝。 氮化镓和氮化镓之间的界面上的空穴和电子能量(带偏移)的差异使得从氮化镓铝到氮化镓的空穴和电子转移增强,或者从氮化镓到铝的空穴和电子转移被抑制 氮化镓。 选择层1和2中的铝含量使得器件的正向偏置导通状态中的空穴传输增强,并且在器件的反向偏置阻塞状态下被抑制。 选择层2和3中的铝含量,使得器件的正向偏压阻挡状态下的空穴传输受到抑制,这降低了泄漏电流并且当器件从正向偏置阻塞状态向前转变时增强了到层2中的空穴传输 偏置导通状态。 可以通过与第三层的栅极接触来提供器件的触发。 公开了各种示例性实施例。
    • 8. 发明授权
    • Transistorless, multistable current-mode memory cells and memory arrays
and methods of reading and writing to the same
    • 无晶体管,多电流电流模式存储单元和存储器阵列以及读写方法
    • US5745407A
    • 1998-04-28
    • US628821
    • 1996-04-05
    • Harold J. LevyThomas C. McGill
    • Harold J. LevyThomas C. McGill
    • G11C11/39G11C11/56H01L27/102G11C11/00G11C11/36H01L27/108
    • H01L27/1021G11C11/39G11C11/56G11C2211/5614Y10S438/979
    • A transistorless memory cell for storing information as one of two possible bistable current states comprises (i) at least one first transistorless device exhibiting N-type negative differential resistance, including a high-impedance region, a low-impedance region and a negative-resistance region and having a polarity and (ii) at least one second transistorless device exhibiting an exponential or linear current-voltage characteristic and coupled to the first transistorless device. The read/write operation of the transistorless memory cell is performed in a current mode. A method for fabricating a self-aligned, three-dimensional structure of memory cells comprises the steps of (i) forming a first conducting layer, (ii) forming a first semiconductor layer above the first conducting layer, (iii) forming a second semiconductor layer above the first semiconductor layer, (iv) patterning the second semiconductor layer, (v) etching the second semiconductor layer, the first semiconductor layer and the first conducting layer, (vi) forming a second conducting layer above the second semiconductor layer, (vii) patterning and etching the second conducting layer, and (viii) etching the second semiconductor layer using the second conducting layer as a mask to form multiple semiconducting devices of a second kind, and etching the first semiconductor layer using the second conducting layer as a mask to form multiple semiconducting devices of a first kind, wherein the semiconducting devices of the first kind exhibit N-type negative differential resistance, and the semiconducting devices of the second kind may exhibit exponential or linear current-voltage characteristics.
    • 用于将信息存储为两个可能的双稳电流状态之一的无晶体管存储单元包括:(i)至少一个具有N型负差分电阻的第一无晶体管器件,包括高阻抗区域,低阻抗区域和负电阻 区域并具有极性,以及(ii)呈现指数或线性电流 - 电压特性并耦合到第一无晶体管器件的至少一个第二无晶体管器件。 无电晶体管存储单元的读/写操作在当前模式下执行。 一种用于制造存储单元的自对准三维结构的方法包括以下步骤:(i)形成第一导电层,(ii)在第一导电层上形成第一半导体层,(iii)形成第二半导体 (iv)图案化第二半导体层,(v)蚀刻第二半导体层,第一半导体层和第一导电层,(vi)在第二半导体层上形成第二导电层( vii)图案化和蚀刻第二导电层,以及(viii)使用第二导电层作为掩模蚀刻第二半导体层以形成第二种导电层的多个半导体器件,并且使用第二导电层作为第一导电层来蚀刻第一半导体层 掩模形成第一种半导体器件,其中第一类半导体器件表现出N型负微分电阻,半导体器件 第二种的导电装置可以呈现指数或线性的电流 - 电压特性。
    • 10. 发明授权
    • Multiple stage high power diode
    • 多级大功率二极管
    • US06610999B2
    • 2003-08-26
    • US09851692
    • 2001-05-08
    • Zvonimir Z. BandicEric C. PiquetteThomas C. McGill
    • Zvonimir Z. BandicEric C. PiquetteThomas C. McGill
    • H01L310256
    • H01L29/1608H01L27/0814H01L27/095H01L29/2003H01L29/47H01L29/475H01L29/872
    • A Schottky rectifier has multiple stages with substantially identical or very similar structures. Each stage includes a nitride-based semiconductor layer, a Schottky contact formed on one surface of the semiconductor layer, and an ohmic contact formed on an opposite surface of the semiconductor layer. The Schottky layer is formed from a metallic material with a high metal work function, and the ohmic contact is formed from a metallic material with a low metal work function. At least one of the stages is a middle stage located between two adjacent stages, such that the Schottky contact of the middle stage and the ohmic contact of one of the adjacent stages are joined together, and such that the ohmic contact of the middle stage and the Schottky contact of another one of the adjacent stages are joined together.
    • 肖特基整流器具有多个阶段,具有基本相同或非常相似的结构。 每个级包括氮化物基半导体层,形成在半导体层的一个表面上的肖特基接触和形成在半导体层的相对表面上的欧姆接触。 肖特基层由具有高金属功能的金属材料形成,并且欧姆接触由具有低金属功函数的金属材料形成。 至少一个阶段是位于两个相邻阶段之间的中间阶段,使得中间阶段的肖特基接触和相邻阶段之一的欧姆接触被连接在一起,并且使得中间阶段的欧姆接触和 另一个相邻级的肖特基接触被连接在一起。