会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Glass composite including dispersed rare earth iron garnet nanoparticles
    • 玻璃复合材料包括分散的稀土铁石榴石纳米粒子
    • US20050008875A1
    • 2005-01-13
    • US10914288
    • 2004-08-10
    • Susamu TaketomiChristopher SorensenKennth Klabunde
    • Susamu TaketomiChristopher SorensenKennth Klabunde
    • C03C14/00G11B5/702G11B5/84G11B11/105B32B17/06
    • G11B11/10582C03C14/006C03C2214/16C03C2214/30G11B5/702G11B5/70626G11B5/84
    • Glass/nanoparticle composites are provided which include a glass matrix with a high density of heterologous nanoparticles embedded therein adjacent the outer surfaces of the composite. Preferably, the glass matrix is formed of porous glass and the nanoparticles are yttrium-iron nanocrystals which exhibit the property of altering the polarization of incident electromagnetic radiation; the composites are thus suitable for use in electrooptical recording media. In practice, a glass matrix having suitable porosity is contacted with a colloidal dispersion containing amorphous yttrium-iron nanoparticles in order to embed the nanoparticles within the surface pores of the matrix. The treated glass matrix is then heated under time-temperature conditions to convert the amorphous nanoparticles into a crystalline state while also fusing the glass matrix pores. Nanoparticle loadings on the order of 109 nanoparticles/mm2 of glass surface area are possible, allowing construction of recording media having a recordable data density many times greater than conventional media.
    • 提供玻璃/纳米颗粒复合材料,其包括嵌入复合材料外表面的高密度异源纳米颗粒的玻璃基质。 优选地,玻璃基体由多孔玻璃形成,并且纳米颗粒是表现出改变入射电磁辐射的极化性质的钇 - 铁纳米晶体; 因此该复合材料适用于电光记录介质。 在实践中,具有合适孔隙率的玻璃基质与含有无定形钇 - 铁纳米颗粒的胶态分散体接触,以将纳米颗粒嵌入基质的表面孔内。 然后将经处理的玻璃基质在时间温度条件下加热以将无定形纳米颗粒转化为结晶状态,同时还熔合玻璃基质孔。 玻璃表面积为10 9纳米颗粒/ mm 2的纳米粒子载量是可能的,允许构建具有比常规介质多数倍的可记录数据密度的记录介质。
    • 2. 发明授权
    • Glass composite including dispersed rare earth iron garnet nanoparticles
    • 玻璃复合材料包括分散的稀土铁石榴石纳米粒子
    • US07078071B2
    • 2006-07-18
    • US10914288
    • 2004-08-10
    • Susamu TaketomiChristopher M. SorensenKennth J. Klabunde
    • Susamu TaketomiChristopher M. SorensenKennth J. Klabunde
    • B05D1/24
    • G11B11/10582C03C14/006C03C2214/16C03C2214/30G11B5/702G11B5/70626G11B5/84
    • Glass/nanoparticle composites are provided which include a glass matrix with a high density of heterologous nanoparticles embedded therein adjacent the outer surfaces of the composite. Preferably, the glass matrix is formed of porous glass and the nanoparticles are yttrium-iron nanocrystals which exhibit the property of altering the polarization of incident electromagnetic radiation; the composites are thus suitable for use in electrooptical recording media. In practice, a glass matrix having suitable porosity is contacted with a colloidal dispersion containing amorphous yttrium-iron nanoparticles in order to embed the nanoparticles within the surface pores of the matrix. The treated glass matrix is then heated under time-temperature conditions to convert the amorphous nanoparticles into a crystalline state while also fusing the glass matrix pores. Nanoparticle loadings on the order of 109 nanoparticles/mm2 of glass surface area are possible, allowing construction of recording media having a recordable data density many times greater than conventional media.
    • 提供玻璃/纳米颗粒复合材料,其包括嵌入复合材料外表面的高密度异源纳米颗粒的玻璃基质。 优选地,玻璃基体由多孔玻璃形成,并且纳米颗粒是表现出改变入射电磁辐射的极化性质的钇 - 铁纳米晶体; 因此该复合材料适用于电光记录介质。 在实践中,具有合适孔隙率的玻璃基质与含有无定形钇 - 铁纳米颗粒的胶态分散体接触,以将纳米颗粒嵌入基质的表面孔内。 然后将经处理的玻璃基质在时间温度条件下加热以将无定形纳米颗粒转化为结晶状态,同时还熔合玻璃基质孔。 大约10 9纳米颗粒/ mm 2的玻璃表面积的纳米粒子载量是可能的,允许构建具有比常规介质多数倍的可记录数据密度的记录介质。
    • 3. 发明授权
    • Glass composite including dispersed rare earth iron garnet nanoparticles
    • 玻璃复合材料包括分散的稀土铁石榴石纳米粒子
    • US06790521B1
    • 2004-09-14
    • US09679856
    • 2000-10-05
    • Susamu TaketomiChristopher M. SorensenKennth J. Klabunde
    • Susamu TaketomiChristopher M. SorensenKennth J. Klabunde
    • B32B1700
    • G11B11/10584C03C12/00C03C14/004C03C14/006C03C2214/16C03C2214/30G11B5/7315G11B11/10586Y10T428/25Y10T428/252
    • Glass/nanoparticle composites are provided which include a glass matrix with a high density of heterologous nanoparticles embedded therein adjacent the outer surfaces of the composite. Preferably, the glass matrix is formed of porous glass and the nanoparticles are yttrium-iron nanocrystals which exhibit the property of altering the polarization of incident electromagnetic radiation; the composites are thus suitable for use in electrooptical recording media. In practice, a glass matrix having suitable porosity is contacted with a colloidal dispersion containing amorphous yttrium-iron nanoparticles in order to embed the nanoparticles within the surface pores of the matrix. The treated glass matrix is then heated under time-temperature conditions to convert the amorphous nanoparticles into a crystalline state while also fusing the glass matrix pores. Nanoparticle loadings on the order of 109 nanoparticles/mm2 of glass surface area are possible, allowing construction of recording media having a recordable data density many times greater than conventional media.
    • 提供玻璃/纳米颗粒复合材料,其包括嵌入复合材料外表面的高密度异源纳米颗粒的玻璃基质。 优选地,玻璃基体由多孔玻璃形成,并且纳米颗粒是表现出改变入射电磁辐射的极化性质的钇 - 铁纳米晶体; 因此该复合材料适用于电光记录介质。 在实践中,具有合适孔隙率的玻璃基质与含有无定形钇 - 铁纳米颗粒的胶态分散体接触,以将纳米颗粒嵌入基质的表面孔内。 然后将经处理的玻璃基质在时间温度条件下加热以将无定形纳米颗粒转化为结晶状态,同时还熔合玻璃基质孔。 玻璃表面积为10 9纳米颗粒/ mm 2的纳米粒子载量是可能的,允许构建具有比常规介质多数倍的可记录数据密度的记录介质。
    • 4. 发明授权
    • Optical apparatus using anomalously strong magneto-birefringence of
magnetic fluid
    • 使用磁性流体的异常强磁双折射的光学装置
    • US4812767A
    • 1989-03-14
    • US877790
    • 1986-06-24
    • Susamu Taketomi
    • Susamu Taketomi
    • G01R33/032G02F1/09G02F1/39G02F3/02G11C13/06G02B5/30
    • G11C13/06G01R33/0322G02F1/09G02F1/39G02F3/022
    • An anomalously strong magneto-optical effect of a magnetic fluid thin film is obtainable when an external magnetic field is applied in the perpendicular direction to the propagation of the light beam, thus making the magnetic fluid thin film possess a birefringent property. In consequence thereof, a phase difference appears between the two modes of the light which pass through the magnetic fluid thin film. The phase difference is a single valued function of the magnetic field applied to the thin film. An apparatus using such an effect (hereinafter referred to as Magnetic Fluid Thin Film's Anomalous Pseudo-Cotton-Mouton Effect) is primarily for detecting a magnetic field and can be used as a magnetic field sensor, a transformer, an apparatus for controlling a light intensity containing an optical shutter and an optical modulator, an optically bistable apparatus, a memory for an optical computer and a light intensity stabilizer for lasers and an optical amplifier.
    • 当在与光束的传播垂直的方向上施加外部磁场时,可以获得磁性流体薄膜的异常强的磁光效应,从而使得磁性流体薄膜具有双折射性质。 因此,在通过磁性流体薄膜的光的两种模式之间出现相位差。 相位差是施加到薄膜的磁场的单值函数。 使用这种效果的装置(以下称为磁性流体薄膜的异常伪棉花木瓜效应)主要用于检测磁场,并且可以用作磁场传感器,变压器,用于控制光强度的装置 包括光学快门和光学调制器,光学双稳态装置,用于光学计算机的存储器和用于激光器的光强度稳定器和光学放大器。