会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Returns-timing for multiple market factor risk models
    • 多个市场因素风险模型的回报 - 时间
    • US08533107B2
    • 2013-09-10
    • US13503696
    • 2011-05-19
    • Simon Wannasin BellStefan Hans SchmietaFrank Pak-Ho Siu
    • Simon Wannasin BellStefan Hans SchmietaFrank Pak-Ho Siu
    • G06Q40/00
    • G06Q40/06G06Q40/08
    • Until recently, risk models have been built using low frequency data, such as weekly or monthly data. This approach has resulted in a necessary compromise between model stability for which one needs a long history of data, and model responsiveness, for which, the shorter the history, the better. Stability plus responsiveness can be achieved if one uses daily data, which allows for a large number of observations to be used in model estimation without using long out-of-date data. Daily data have other problems, however, as the differing closing times of markets worldwide may induce spurious relationships across model factors. In particular, correlations between markets may appear lower than they truly are due to a market lag effect. To address such issues, a stable, daily data-based factor risk model is described which takes account of the differing market closing times and corrects the model factor correlations and specific returns accordingly.
    • 直到最近,已经使用低频数据(例如每周或每月数据)构建风险模型。 这种方法导致了模型稳定性之间的必要妥协,人们需要长期的数据历史和模型响应能力,历史越短越好。 如果使用日常数据,可以实现稳定性和响应能力,这样可以在不使用长期过期数据的情况下,将大量观测数据用于模型估计。 然而,每日数据还有其他问题,因为全球市场的不同关闭时间可能会导致模型因素之间的虚假关系。 特别地,市场之间的相关性可能看起来比真正由于市场滞后效应低。 为了解决这些问题,描述了一个稳定的基于日常数据的因素风险模型,其中考虑到不同的市场收盘时间,并相应地纠正模型因素相关性和具体回报。
    • 2. 发明授权
    • Hardware design for majority voting, and testing and maintenance of majority voting
    • 多数投票的硬件设计,多数投票的测试和维护
    • US06247160B1
    • 2001-06-12
    • US09090411
    • 1998-06-04
    • Stefan Hans Bertil DavidssonOla Per MartinssonCarl Michael Carlsson
    • Stefan Hans Bertil DavidssonOla Per MartinssonCarl Michael Carlsson
    • G06F1108
    • G06F11/187G06F11/1604
    • The invention relates to majority voting. A number of input signals are monitored individually by separate monitors, one monitor for each signal. Each monitor generates a control signal representing the status of the monitored signal. The generated control signals are sent to a level control unit. The level control unit control the input levels to a majority voter according to the control signals. Instead of signals that are faulty, the level control unit selects signals of specific logical levels to be forwarded to the majority logic. The logical levels of these so called replacement signals are selected such that the replacement signals do not interfere with the remaining correct signals. Furthermore, the majority voted output signal is monitored so as to selectively generate an alarm. The voting functionality is tested by stopping input signals according to a first procedure, thus generating an alarm. By stopping input signals according to a second procedure, an alarm is avoided.
    • 本发明涉及多数投票。 多个输入信号由单独的监视器单独监视,每个信号一个监视器。 每个监视器产生表示所监视信号状态的控制信号。 所生成的控制信号被发送到电平控制单元。 电平控制单元根据控制信号将输入电平控制为多数选民。 代替有故障的信号,电平控制单元选择要转发到多数逻辑的特定逻辑电平的信号。 选择这些所谓的替换信号的逻辑电平,使得替换信号不会干扰剩余的正确信号。 此外,监视多数投票输出信号,以选择性地产生报警。 通过根据第一过程停止输入信号来测试投票功能,从而产生报警。 通过根据第二过程停止输入信号,避免了报警。
    • 3. 发明授权
    • Identifying and compensating for model mis-specification in factor risk models
    • 在因子风险模型中识别和补偿模型错误规范
    • US08315936B2
    • 2012-11-20
    • US12711554
    • 2010-02-24
    • Robert A. StubbsStefan Hans Schmieta
    • Robert A. StubbsStefan Hans Schmieta
    • G06Q40/00
    • G06Q40/06G06Q40/00G06Q40/04
    • Techniques for more accurately estimating the risk, or active risk, of an investment portfolio when using factor risk models are disclosed. This improved accuracy is achieved by identifying and compensating for the inherent “modeling error” present when risk is represented using a factor risk model. The approach adds one or more factors that depend on the investment portfolio and that explicitly compensate for factors that are unspecified or unattributed in the original factor risk model. These unspecified factors of the original factor risk model lead to modeling error in the original factor risk model. The approach can be used with a variety of different factor risk models, such as, fundamental, statistical and macro risk models, for example, and for a variety of securities, such as equities, international equities, composites, exchange traded funds (ETFs), or the like, currencies, and fixed-income, for example. The risk associated with modeling error in a factor risk model relative to a particular portfolio is identified and quantified. Knowledge of this risk associated with modeling error can be utilized when estimating risk, or active risk, using factor risk models or when constructing optimal portfolios by mean-variance optimization or other portfolio construction strategies and procedures that make use of factor risk models.
    • 披露了在使用因子风险模型时更准确地估计投资组合的风险或主动风险的技术。 当使用因子风险模型表示风险时,通过识别和补偿存在的固有建模误差来实现提高的准确度。 该方法增加了一个或多个依赖于投资组合的因素,并明确补偿了原始因素风险模型中未指定或未归因的因素。 原始因素风险模型的这些未明确因素导致原始因素风险模型的建模误差。 该方法可用于各种不同因素风险模型,如基本面,统计学和宏观风险模型,以及各种证券,如股票,国际股票,复合材料,交易所交易基金(ETF)等。 ,等等,货币和固定收益。 与特定投资组合相关的因素风险模型中的建模误差相关风险被识别和量化。 使用因子风险模型估计风险或主动风险时,可以利用与建模误差相关的风险的知识,或者通过均值方差优化或利用因子风险模型的其他投资组合构建策略和程序来构建最优投资组合。
    • 5. 发明授权
    • Hardware design for majority voting, and testing and maintenance of majority voting
    • 多数投票的硬件设计,多数投票的测试和维护
    • US06253348B1
    • 2001-06-26
    • US09545863
    • 2000-04-07
    • Stefan Hans Bertil DavidssonOla Per MartinssonCarl Michael Carlsson
    • Stefan Hans Bertil DavidssonOla Per MartinssonCarl Michael Carlsson
    • G06F1108
    • G06F11/187G06F11/1604
    • The invention relates to majority voting testing. A number of input signals are monitored individually by separate monitors, one monitor for each signal. Each monitor generates a control signal representing the status of the monitored signal. The generated control signals are sent to a level control unit. The level control unit controls the input levels to a majority voter according to the control signals. Instead of signals that are faulty, the level control unit selects signals of specific logical levels to be forwarded to the majority logic. The logical levels of these so called replacement signals are selected such that the replacement signals do not interfere with the remaining correct signals. Furthermore, the majority voted output signal is monitored so as to selectively generate an alarm. The voting functionality is tested by stopping input signals according to a first procedure, thus generating an alarm. By stopping input signals according to a second procedure, an alarm is avoided.
    • 本发明涉及多数投票测试。 多个输入信号由单独的监视器单独监视,每个信号一个监视器。 每个监视器产生表示所监视信号状态的控制信号。 所生成的控制信号被发送到电平控制单元。 电平控制单元根据控制信号控制多数选民的输入电平。 代替有故障的信号,电平控制单元选择要转发到多数逻辑的特定逻辑电平的信号。 选择这些所谓的替换信号的逻辑电平,使得替换信号不会干扰剩余的正确信号。 此外,监视多数投票输出信号,以选择性地产生报警。 通过根据第一过程停止输入信号来测试投票功能,从而产生报警。 通过根据第二过程停止输入信号,避免了报警。
    • 6. 发明申请
    • Returns-Timing for Multiple Market Factor Risk Models
    • 多个市场因素风险模型的回报 - 时间
    • US20130080310A1
    • 2013-03-28
    • US13503696
    • 2011-05-19
    • Simon Wannasin BellStefan Hans SchmietaFrank Pak-Ho Siu
    • Simon Wannasin BellStefan Hans SchmietaFrank Pak-Ho Siu
    • G06Q40/04
    • G06Q40/06G06Q40/08
    • Until recently, risk models have been built using low frequency data, such as weekly or monthly data. This approach has resulted in a necessary compromise between model stability for which one needs a long history of data, and model responsiveness, for which, the shorter the history, the better. Stability plus responsiveness can be achieved if one uses daily data, which allows for a large number of observations to be used in model estimation without using long out-of-date data. Daily data have other problems, however, as the differing closing times of markets worldwide may induce spurious relationships across model factors. In particular, correlations between markets may appear lower than they truly are due to a market lag To address such issues, a stable, daily data-based factor risk model is described which takes account of the differing market closing times and corrects the model factor correlations and specific returns accordingly.
    • 直到最近,已经使用低频数据(例如每周或每月数据)构建风险模型。 这种方法导致了模型稳定性之间的必要妥协,人们需要长期的数据历史和模型响应能力,历史越短越好。 如果使用日常数据,可以实现稳定性和响应能力,这样可以在不使用长期过期数据的情况下,将大量观测数据用于模型估计。 然而,每日数据还有其他问题,因为全球市场的不同关闭时间可能会导致模型因素之间的虚假关系。 特别地,市场之间的相关性可能比真正由于市场滞后而显得低。为了解决这些问题,描述了稳定的基于数据的每日因素风险模型,其考虑到不同的市场收盘时间并且校正模型因素相关性 并据此具体回报。
    • 7. 发明授权
    • Identifying and compensating for model mis-specification in factor risk models
    • 在因子风险模型中识别和补偿模型错误规范
    • US07698202B2
    • 2010-04-13
    • US11668294
    • 2007-01-29
    • Robert A. StubbsStefan Hans Schmieta
    • Robert A. StubbsStefan Hans Schmieta
    • G06Q40/00
    • G06Q40/06G06Q40/00G06Q40/04
    • Techniques for more accurately estimating the risk, or active risk, of an investment portfolio when using factor risk models are disclosed. This improved accuracy is achieved by identifying and compensating for the inherent “modeling error” present when risk is represented using a factor risk model. The approach adds one or more factors that depend on the investment portfolio and that explicitly compensate for factors that are unspecified or unattributed in the original factor risk model. These unspecified factors of the original factor risk model lead to modeling error in the original factor risk model. The approach can be used with a variety of different factor risk models, such as, fundamental, statistical and macro risk models, for example, and for a variety of securities, such as equities, international equities, composites, exchange traded funds (ETFs), or the like, currencies, and fixed-income, for example. The risk associated with modeling error in a factor risk model relative to a particular portfolio is identified and quantified. Knowledge of this risk associated with modeling error can be utilized when estimating risk, or active risk, using factor risk models or when constructing optimal portfolios by mean-variance optimization or other portfolio construction strategies and procedures that make use of factor risk models.
    • 披露了在使用因子风险模型时更准确地估计投资组合的风险或主动风险的技术。 当使用因子风险模型表示风险时,通过识别和补偿存在的固有“建模误差”来实现这种改进的准确性。 该方法增加了一个或多个依赖于投资组合的因素,并明确补偿了原始因素风险模型中未指定或未归因的因素。 原始因素风险模型的这些未明确因素导致原始因素风险模型的建模误差。 该方法可用于各种不同因素风险模型,如基本面,统计学和宏观风险模型,以及各种证券,如股票,国际股票,复合材料,交易所交易基金(ETF)等。 ,等等,货币和固定收益。 与特定投资组合相关的因素风险模型中的建模误差相关风险被识别和量化。 使用因子风险模型估计风险或主动风险时,可以利用与建模误差相关的风险的知识,或者通过均值方差优化或利用因子风险模型的其他投资组合构建策略和程序来构建最优投资组合。
    • 10. 发明申请
    • Identifying and Compensating for Model Mis-Specification in Factor Risk Models
    • 在因子风险模型中识别和补偿模型误差规范
    • US20130041848A1
    • 2013-02-14
    • US13654797
    • 2012-10-18
    • Robert A. StubbsStefan Hans Schmieta
    • Robert A. StubbsStefan Hans Schmieta
    • G06Q40/06
    • G06Q40/06G06Q40/00G06Q40/04
    • Techniques for using factor risk models to more accurately estimate the risk or active risk of an investment portfolio are disclosed. Inherent “modeling error” in factor risk models is identified and compensated for. One or more factors are added to compensate for factors that are unspecified or unattributed in the original factor risk model and which lead to modeling error. The approach can be used with a variety of different factor risk models, and for a variety of securities. Knowledge of the risk associated with modeling error can be utilized when estimating risk or active risk using factor risk models or when constructing optimal portfolios by mean-variance optimization or other portfolio construction strategies using factor risk models.
    • 披露了使用因子风险模型更准确地估计投资组合的风险或主动风险的技术。 确定并补偿因素风险模型的固有建模误差。 添加一个或多个因素来补偿原始因子风险模型中未指定或未归因的因素,并导致建模误差。 该方法可用于各种不同因素风险模型,以及各种证券。 在使用因子风险模型估计风险或主动风险时,或通过均值方差优化或使用因子风险模型的其他投资组合构建策略构建最优投资组合时,可以利用与建模误差相关的风险的知识。