会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Magnetic alloy material and method of making the magnetic alloy material
    • 磁性合金材料及其制造方法
    • US07670443B2
    • 2010-03-02
    • US11673729
    • 2007-02-12
    • Ryosuke KogureHirokazu KanekiyoTakeshi NishiuchiSatoshi Hirosawa
    • Ryosuke KogureHirokazu KanekiyoTakeshi NishiuchiSatoshi Hirosawa
    • H01F1/053
    • H01F1/015H01F1/0571
    • A method of making a magnetic alloy material includes the steps of: preparing a melt of an alloy material having a predetermined composition; rapidly cooling and solidifying the melt to obtain a rapidly solidified alloy represented by: Fe100-a-b-cREaAbTMc where RE is at least one rare-earth element selected from La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er and Tm and including at least about 90 at % of La; A is at least one element selected from Al, Si, Ga, Ge and Sn; TM is at least one transition metal element selected from Sc, Ti, V, Cr, Mn, Co, Ni, Cu and Zn; and 5 at %≦a≦10 at %, 4.7 at %≦b≦18 at % and 0 at %≦c≦9 at %; and producing a compound phase having an NaZn13-type crystal structure in at least about 70 vol % of the rapidly solidified alloy.
    • 制造磁性合金材料的方法包括以下步骤:制备具有预定组成的合金材料的熔体; 快速冷却和固化熔体,得到一种由Fe100-ab-cREaAbTMc表示的快速固化的合金,其中RE是选自La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb中的至少一种稀土元素, Dy,Ho,Er和Tm,并且包括至少约90原子%的La; A是选自Al,Si,Ga,Ge和Sn中的至少一种元素; TM是选自Sc,Ti,V,Cr,Mn,Co,Ni,Cu和Zn中的至少一种过渡金属元素; 和5 at%≦̸ a≦̸ 10 at%,4.7 at%≦̸ b≦̸ 18 at%和0 at%≦̸ c≦̸ 9 at%; 并在至少约70vol%的快速凝固合金中生产具有NaZn13型晶体结构的复合相。
    • 3. 发明申请
    • R-Fe-B MICROCRYSTALLINE HIGH-DENSITY MAGNET AND PROCESS FOR PRODUCTION THEREOF
    • R-Fe-B微晶高密度磁铁及其生产工艺
    • US20090032147A1
    • 2009-02-05
    • US12254967
    • 2008-10-21
    • Noriyuki NOZAWATakeshi NISHIUCHISatoshi HIROSAWATomohito MAKI
    • Noriyuki NOZAWATakeshi NISHIUCHISatoshi HIROSAWATomohito MAKI
    • H01F1/08C22C1/04B22F3/11B22F3/12
    • H01F41/0273B22F3/11B22F2003/248B22F2998/10C22C38/005C22C2202/02H01F1/0573H01F1/0576H01F1/0577H01F1/0578H01F41/0293B22F3/02B22F3/24
    • An R—Fe—B based rare-earth alloy powder with a mean particle size of less than about 20 μm is provided and compacted to make a powder compact. Next, the powder compact is subjected to a heat treatment at a temperature of about 550° C. to less than about 1,000° C. within hydrogen gas, thereby producing hydrogenation and disproportionation reactions (HD processes). Then, the powder compact is subjected to another heat treatment at a temperature of about 550° C. to less than about 1,000° C. within either a vacuum or an inert atmosphere, thereby producing desorption and recombination reactions and obtaining a porous material including fine crystal grains, of which the density is about 60% to about 90% of their true density and which have an average crystal grain size of about 0.01 μm to about 2 μm (DR processes). Thereafter, the porous material is subjected to yet another heat treatment at a temperature of about 750° C. to less than about 1,000° C. within either the vacuum or the inert atmosphere, thereby further increasing its density to about 93% or more of their true density and making an R—Fe—B based microcrystalline high-density magnet.
    • 提供平均粒径小于约20μm的R-Fe-B系稀土合金粉末并压实成粉末压块。 接着,在氢气中,在约550℃至小于约1000℃的温度下对粉体进行热处理,由此进行氢化和歧化反应(HD工艺)。 然后,在真空或惰性气氛中,将粉末压块在约550℃至小于约1000℃的温度下进行另外的热处理,从而产生解吸和重组反应,并获得包括精细的多孔材料 晶粒,其密度为其真实密度的约60%至约90%,并且其平均晶粒尺寸为约0.01μm至约2μm(DR工艺)。 此后,多孔材料在真空或惰性气氛中在约750℃至小于约1000℃的温度下进行另外的热处理,从而进一步将其密度提高到约93%以上 它们的真实密度并制成R-Fe-B基微晶高密度磁体。
    • 5. 发明授权
    • Magnetic alloy material and method of making the magnetic alloy material
    • 磁性合金材料及其制造方法
    • US07186303B2
    • 2007-03-06
    • US10642276
    • 2003-08-18
    • Ryosuke KogureHirokazu KanekiyoTakeshi NishiuchiSatoshi Hirosawa
    • Ryosuke KogureHirokazu KanekiyoTakeshi NishiuchiSatoshi Hirosawa
    • H01F1/055
    • H01F1/015H01F1/0571
    • A method of making a magnetic alloy material includes the steps of: preparing a melt of an alloy material having a predetermined composition; rapidly cooling and solidifying the melt to obtain a rapidly solidified alloy represented by: Fe100-a-b-cREaAbTMc where RE is at least one rare-earth element selected from La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er and Tm and including at least about 90 at % of La; A is at least one element selected from Al, Si, Ga, Ge and Sn; TM is at least one transition metal element selected from Sc, Ti, V, Cr, Mn, Co, Ni, Cu and Zn; and 5 at %≦a≦10 at %, 4.7 at %≦b≦18 at % and 0 at %≦c≦9 at %; and producing a compound phase having an NaZn13-type crystal structure in at least about 70 vol % of the rapidly solidified alloy.
    • 制造磁性合金材料的方法包括以下步骤:制备具有预定组成的合金材料的熔体; 快速冷却和固化熔体以获得由以下物质表示的快速固化的合金:Fe / SUB>其中RE是选自La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er和Tm中的至少一种稀土元素,并且包括至少约90at%的La ; A是选自Al,Si,Ga,Ge和Sn中的至少一种元素; TM是选自Sc,Ti,V,Cr,Mn,Co,Ni,Cu和Zn中的至少一种过渡金属元素; 和5原子%<= a <= 10原子%,4.7原子%<= b <= 18原子%和0原子%<= c <= 9原子% 并在至少约70vol%的快速凝固合金中生产具有NaZn 13 N型晶体结构的化合物相。
    • 7. 发明授权
    • Method for preparing nanocomposite magnet powder and method for producing nanocomposite magnet
    • 制备纳米复合磁体粉末的方法和制备纳米复合磁体的方法
    • US06471786B1
    • 2002-10-29
    • US09662750
    • 2000-09-15
    • Yasutaka ShigemotoSatoshi HirosawaHirokazu Kanekiyo
    • Yasutaka ShigemotoSatoshi HirosawaHirokazu Kanekiyo
    • H01F1057
    • B82Y25/00B22F1/0044B22F9/007C22C1/0441H01F1/0579Y10S977/773Y10S977/777Y10S977/893
    • The inventive method for preparing nanocomposite magnet powder includes the step of preparing material alloy powder for a nanocomposite magnet represented by a general formula Fe100−x−y−z−uRxByCozMu where R is a rare-earth element of which 90-100 atomic percent is Pr and/or Nd while 0-10 atomic percent is another lanthanoid and/or Y, and the molar fractions x, y, z and u meet the inequalities of 2≦x≦6, 16≦y≦20, 0.2≦z≦7 and 0.01≦u≦7, respectively. The powder includes a metastable phase and an amorphous structure existing in a metal structure. Heat treatment is performed for the material alloy powder to crystallize Fe3B and Fe—R—B compounds from the amorphous structure. An integral value of the difference between a temperature-time curve represented by the temperature of the material alloy powder as a function of the heat treatment time during the heat treatment and a reference temperature-time curve is in a range from 10° C.·sec to 10,000° C.·sec, the reference temperature-time curve being obtained when heat treatment similar to the above heat treatment is performed for an equivalent amount of alloy that has the same composition as the material alloy but does not include the amorphous structure.
    • 制备纳米复合磁体粉末的本发明的方法包括制备由通式Fe100-xyz-uRxByCozMu表示的纳米复合磁体的材料合金粉末的步骤,其中R是稀土元素,其中90-100原子%为Pr和/或 Nd,而0-10原子%是另一种镧系元素和/或Y,并且摩尔分数x,y,z和u满足不等式2 <= x <= 6,16 <= y <= 20,0.2 <= z <= 7和0.01 <= u <= 7。 粉末包括存在于金属结构中的亚稳相和无定形结构。 对材料合金粉末进行热处理,以使非晶结构中的Fe 3 B和Fe-R-B化合物结晶。 以材料合金粉末的温度表示的温度 - 时间曲线与热处理期间的热处理时间的函数和基准温度 - 时间曲线之间的差的积分值在10℃的范围内。 秒至10,000℃...秒,对于与材料合金具有相同组成但不包括无定形结构的等效量的合金进行与上述热处理相似的热处理时获得的参考温度 - 时间曲线 。
    • 8. 发明授权
    • Method of producing laminated permanent magnet
    • 叠层永久磁铁的制造方法
    • US06287391B1
    • 2001-09-11
    • US09242826
    • 1999-02-24
    • Hirokazu KanekiyoSatoshi Hirosawa
    • Hirokazu KanekiyoSatoshi Hirosawa
    • H01F1057
    • H01F41/0266H01F1/0571H01F1/0575H01F1/0576H01F1/058H01F41/028
    • A method for manufacturing a permanent magnet by fabricating rapidly cooled alloy thin strip of amorphous composition which has good tenacity, simple working properties and an average thickness of 10 &mgr;m˜200 &mgr;m, from a molten alloy of a specific composition containing 6 at % or less of rare-earth element and 15 at %˜30 at % of boron, by means of specific rapid cooling conditions, and then subjecting this rapidly cooled alloy thin strip, after cutting or punching to a prescribed shape, to crystallization heat treatment such that the average crystal grain size thereof becomes 10 nm˜50 nm, and by layering together two or more of these thin permanent magnets and bonding and uniting the layered thin strips by means of an inorganic adhesive material or a resin, it is possible readily to provide a high-performance layered permanent magnet having a desired thickness and a prescribed shape, without using a method involving crushing and bonded magnet forming processes and without needing to carry out a cutting process after manufacture.
    • 一种永久磁铁的制造方法,其特征在于,由含有6原子%以下的特定组成的熔融合金制成快速冷却的无定形组合物的合金薄带,其具有良好的韧性,简单的加工性能,平均厚度为10〜200μm 的稀土元素和15at%〜30at%的硼,通过特定的快速冷却条件,然后将该快速冷却的合金薄带在切割或冲压成规定形状之后进行结晶热处理,使得 其平均晶粒尺寸为10nm〜50nm,通过将这些薄永久磁铁中的2个以上并且通过无机粘合剂材料或树脂粘结并结合层叠的薄带而将两个或更多个层叠在一起,可以容易地提供 具有期望厚度和规定形状的高性能分层永磁体,不使用涉及破碎和粘结磁体形成过程的方法,并且不需要汽车 制造后出现切割过程。