会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • Yield improvement in silicon-germanium epitaxial growth
    • 硅锗外延生长的产量提高
    • US07118995B2
    • 2006-10-10
    • US10709644
    • 2004-05-19
    • Mark D. DupuisWade J. HodgeDaniel T. KellyRyan W. Wuthrich
    • Mark D. DupuisWade J. HodgeDaniel T. KellyRyan W. Wuthrich
    • H01L21/20
    • H01L21/02381H01L21/0245H01L21/02532H01L21/0262H01L21/02639
    • A method for determining a SiGe deposition condition so as to improve yield of a semiconductor structure. Fabrication of the semiconductor structure starts with a single-crystal silicon (Si) layer. Then, first and second shallow trench isolation (STI) regions are formed in the single-crystal Si layer. The STI regions sandwich and define a first single-crystal Si region. Next, silicon-germanium (SiGe) mixture is deposited on top of the structure in a SiGe deposition condition so as to grow (i) a second single-crystal silicon region grows up from the top surface of the first single-crystal silicon region and (ii) first and second polysilicon regions from the top surfaces of the first and second STI regions, respectively. By increasing SiGe deposition temperature and/or lowering precursor flow rate until the resulting yield is within a pre-specified range, a satisfactory SiGe deposition condition can be determined for mass production of the structure.
    • 一种用于确定SiGe沉积条件以提高半导体结构的产量的方法。 半导体结构的制造以单晶硅(Si)层开始。 然后,在单晶Si层中形成第一和第二浅沟槽隔离(STI)区域。 STI区域夹持并限定第一单晶Si区域。 接下来,硅锗(SiGe)混合物以SiGe沉积条件沉积在结构的顶部,以便生长(i)第二单晶硅区域从第一单晶硅区域的顶表面生长, (ii)分别来自第一和第二STI区域的顶表面的第一和第二多晶硅区域。 通过提高SiGe沉积温度和/或降低前驱体流速直到得到的产率达到预定范围内,可以确定满足SiGe沉积条件以进行大规模生产。
    • 6. 发明授权
    • Diffused extrinsic base and method for fabrication
    • 扩散的外在基础和制造方法
    • US06869854B2
    • 2005-03-22
    • US10064476
    • 2002-07-18
    • Marc W. CantellJames S. DunnDavid L. HarameRobb A. JohnsonLouis D. LanzerottiStephen A. St. OngeBrian L. TessierRyan W. Wuthrich
    • Marc W. CantellJames S. DunnDavid L. HarameRobb A. JohnsonLouis D. LanzerottiStephen A. St. OngeBrian L. TessierRyan W. Wuthrich
    • H01L21/331H01L21/8249H01L29/10H01L23/62
    • H01L29/66287H01L21/8249H01L29/1004
    • The present invention provides a unique device structure and method that provides increased transistor performance in integrated bipolar circuit devices. The preferred embodiment of the present invention provides improved high speed performance by providing reduced base resistence. The preferred design forms the extrinsic base by diffusing dopants from a dopant source layer and into the extrinsic base region. This diffusion of dopants forms at least a portion of the extrinsic base. In particular, the portion adjacent to the intrinsic base region is formed by diffusion. This solution avoids the problems caused by traditional solutions that implanted the extrinsic base. Specifically, by forming at least a portion of the extrinsic base by diffusion, the problem of damage to base region is minimized. This reduced damage enhances dopant diffusion into the intrinsic base. Additionally, the formed extrinsic base can have improved resistence, resulting in an improved maximum frequency for the bipolar device. Additionally, the extrinsic base can be formed with a self-aligned manufacturing process that reduces fabrication complexity.
    • 本发明提供了在集成双极性电路器件中提供增加的晶体管性能的独特的器件结构和方法。 本发明的优选实施例通过提供降低的基极电阻来提供改进的高速性能。 优选的设计通过将掺杂剂从掺杂剂源层扩散到外部碱性区域中形成外部碱基。 掺杂剂的这种扩散形成至少一部分外在碱。 特别地,通过扩散形成与本征基区相邻的部分。 该解决方案避免了植入外在基础的传统解决方案所引起的问题。 具体地说,通过扩散形成外部基体的至少一部分,能够使基部区域的损伤问题最小化。 这种降低的损伤增强了掺杂剂扩散到本征基质中。 另外,形成的外部基极可以具有改善的电阻,导致双极器件的最大频率改善。 另外,外部基座可以通过降低制造复杂性的自对准制造工艺来形成。
    • 9. 发明授权
    • Yield improvement in silicon-germanium epitaxial growth
    • 硅锗外延生长的产量提高
    • US07413967B2
    • 2008-08-19
    • US11468030
    • 2006-08-29
    • Mark D. DupuisWade J. HodgeDaniel T. KellyRyan W. Wuthrich
    • Mark D. DupuisWade J. HodgeDaniel T. KellyRyan W. Wuthrich
    • H01L21/20
    • H01L21/02381H01L21/0245H01L21/02532H01L21/0262H01L21/02639
    • A method for determining a SiGe deposition condition so as to improve yield of a semiconductor structure. Fabrication of the semiconductor structure starts with a single-crystal silicon (Si) layer. Then, first and second shallow trench isolation (STI) regions are formed in the single-crystal Si layer. The STI regions sandwich and define a first single-crystal Si region. Next, silicon-germanium (SiGe) mixture is deposited on top of the structure in a SiGe deposition condition so as to grow (i) a second single-crystal silicon region grows up from the top surface of the first single-crystal silicon region and (ii) first and second polysilicon regions from the top surfaces of the first and second STI regions, respectively. By increasing SiGe deposition temperature and/or lowering precursor flow rate until the resulting yield is within a pre-specified range, a satisfactory SiGe deposition condition can be determined for mass production of the structure.
    • 一种用于确定SiGe沉积条件以提高半导体结构的产量的方法。 半导体结构的制造以单晶硅(Si)层开始。 然后,在单晶Si层中形成第一和第二浅沟槽隔离(STI)区域。 STI区域夹持并限定第一单晶Si区域。 接下来,硅锗(SiGe)混合物以SiGe沉积条件沉积在结构的顶部,以便生长(i)第二单晶硅区域从第一单晶硅区域的顶表面生长, (ii)分别来自第一和第二STI区域的顶表面的第一和第二多晶硅区域。 通过提高SiGe沉积温度和/或降低前驱体流速直到得到的产率达到预定范围内,可以确定满足SiGe沉积条件以进行大规模生产。