会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明授权
    • Separation system for C.sub.4 hydrotreater effluent having reduced
hydrocarbon loss
    • 具有降低碳氢化合物损失的C4加氢处理器流出物的分离系统
    • US5045175A
    • 1991-09-03
    • US600790
    • 1990-10-22
    • Robert S. HaizmannAndrew S. ZarchyMartin F. Symoniak
    • Robert S. HaizmannAndrew S. ZarchyMartin F. Symoniak
    • C10G67/06
    • C10G67/06
    • A hydrotreating process uses a separation section that reduces the loss of C.sub.4 and higher hydrocarbons through the use of a low hydrogen to hydrocarbon ratio in the reactor and the adsorptive removal of a majority of hydrogen sulfide from a liquid phase hydrotreater effluent. Sulfurous hydrocarbon feed is admixed with hydrogen to maintain a hydrogen to hydrocarbon ratio of less than 50 SCFB. The hydrogen and hydrocarbons are passed through a hydrotreater reactor to convert sulfur compounds to H.sub.2 S. The hydrotreater effluent is cooled and after flashing of any excess hydrogen or light ends the cooled effluent is contacted with an adsorbent material for the removal of H.sub.2 S. A hydrotreated hydrocarbon product is withdrawn from the adsorption section. The low hydrogen to hydrocarbon ratio permits the process to be used without the recycle of hydrogen thereby eliminating the need for separators and compressors that were formly used to recycle hydrogen to the hydrotreater. The elimination of the recycle and the low hydrogen to hydrocarbon ratio simplifies the flowscheme which can use a simple separator to flash light ends, hydrogen and some H.sub.2 S from the hydrotreater effluent. This process thus eliminates the need for a stripping section that was formerly needed to remove light ends and hydrogen sulfide from the hydrotreated product. The adsorptive removal of the H.sub.2 S and the limited venting of hydrogen allows essentially all of the hydrotreated product to be preserved. In most flowschemes H.sub.2 S removal can be carried out in the adsorbers that are usually present for drying of the hydrotreated feed.
    • 加氢处理方法使用分离段,其通过在反应器中使用低的氢烃比例降低C4和高级烃的损失,并从液相加氢处理器流出物中吸附除去大部分硫化氢。 亚硫酸烃进料与氢气混合以保持氢与烃的比例小于50SCFB。 氢气和烃通过加氢处理反应器将硫化合物转化为H 2 S。 加氢处理器流出物被冷却并且在闪蒸过量的氢气或轻馏分之后,冷却的流出物与用于除去H 2 S的吸附材料接触。 加氢处理的烃产物从吸附段中排出。 低氢烃比可以使得该方法不用氢再循环使用,从而消除了对正式用于将氢循环到加氢处理塔中的分离器和压缩机的需要。 循环利用和低氢烃比的消除简化了可以使用简单分离器从加氢处理器流出物中闪蒸轻馏分,氢气和一些H 2 S的流程。 因此,该方法不需要先前需要从加氢处理的产物中除去轻馏分和硫化氢的汽提部分。 H2S的吸附去除和氢的有限排放允许基本上所有的加氢处理产物被保存。 在大多数流程中,可以在通常用于干燥加氢处理的进料的吸附器中进行H 2 S的去除。
    • 6. 发明授权
    • Paraffin isomerization and liquid phase adsorptive product separation
    • 石蜡异构化和液相吸附产物分离
    • US5043525A
    • 1991-08-27
    • US560655
    • 1990-07-30
    • Robert S. HaizmannFrederick M. HibbsSrikantiah Raghuram
    • Robert S. HaizmannFrederick M. HibbsSrikantiah Raghuram
    • C10G61/06C10G67/06C10L1/06
    • C10L1/06C10G61/06C10G2400/02
    • A combination isomerization and liquid phase adsorptive separation process is given increased efficiency and cost effectiveness while also improving the product quality by eliminating the columns for the separation of desorbent material from extract and raffinate streams. In this arrangement a C.sub.5 + naphtha stream is split into a heavy hydrocarbon stream comprising normal hexane and higher boiling hydrocarbons and an isomerization zone feedstream comprising isohexane and lower boiling hydrocarbons. The heavy hydrocarbon stream goes directly to a deisohexanizer column. The isomerization zone feedstream is combined with an excess desorbent stream and the extract stream from an adsorptive separation section to form a combined feed. Hydrocarbons in the combined feed are isomerized and after stabilization pass directly into the adsorption section. In the adsorption section, normal pentanes are selectively adsorbed on an adsorbent material, and a raffinate stream comprising desorbent and isoparaffins is passed to the deisohexanizer column and supplies the desorbent for the adsorption section. Any desorbent in excess of that required for the adsorption section is combined with the isomerization zone feed. The extract stream that is combined with the isomerization zone feed is recovered from adsorption section. A bottoms stream comprising C.sub.7 and higher boiling hydrocarbons is withdrawn from the bottom of the deisohexanizer column. A high octane isomerate is taken overhead from the deisohexanizer as a product stream.
    • 提供组合异构化和液相吸附分离方法提高了效率和成本效益,同时通过消除用于从萃取液和萃余液流中分离解吸剂材料的柱来提高产品质量。 在这种布置中,将C5 +石脑油流分解成包含正己烷和较高沸点烃的重质烃流以及包含异己烷和低沸点烃的异构化区进料流。 重质烃流直接进入脱乙烷塔。 异构化区进料流与过量的解吸剂流和来自吸附分离部分的萃取物流组合以形成组合进料。 合并的进料中的烃异构化,稳定后直接进入吸附段。 在吸附部分,常规的戊烷被选择性地吸附在吸附剂材料上,并且包含解吸剂和异链烷烃的萃余液流被送到脱乙烷塔中并提供用于吸附段的解吸剂。 超过吸附段所需的任何解吸剂与异构化区进料组合。 与异构化区进料结合的萃取物流从吸附段回收。 包含C7和更高沸点烃的底部物流从脱乙酸塔的底部排出。 作为产物流,从脱乙酸酯塔顶馏去高辛烷异构体。
    • 8. 发明授权
    • Hydrotreatment-isomerization without hydrogen recycle
    • 无氢循环的加氢处理异构化
    • US4929794A
    • 1990-05-29
    • US292034
    • 1988-12-30
    • Robert J. SchmidtRobert S. Haizmann
    • Robert J. SchmidtRobert S. Haizmann
    • C07C5/27C10G49/00C10G65/04
    • C10G65/043C07C5/2724C10G49/007
    • A combined process for hydrotreating and isomerizing a C.sub.4 -C.sub.7 feedstock is simplified and made more efficient by the use of a common hydrogen source and low hydrogen to hydrocarbon ratio in both the hydrotreating and isomerization steps of the invention. The method supplies hydrogen to a combined hydrotreatment and isomerization process for the isomerization of a feed stream comprising C.sub.4 -C.sub.7 hydrocarbons. The hydrocarbon feed stream contains sulfur and oxygen contaminants and is combined with a hydrogen-containing stream in an amount that produces a maximum hydrogen to hydrocarbon ratio of 0.9 stdm.sup.3 /m.sup.3 (50 SCFB). The hydrotreater feed is contacted in a hydrotreater reactor with a catalyst comprising a Group VIB metal and a Group VII metal on an alumina support. Effluent from the hydrotreater passes to a first separator that separates the effluent into a first gas stream comprising hydrogen, hydrogen sulfide and water and a treated stream comprising hydrocarbons having from 4-7 carbon atoms. The first gas stream is rejected from the process. The treated stream is mixed with a second hydrogen-containing stream in a proportion that produces a hydrogen to hydrocarbon ratio of from 0.9 to 1.8 stdm.sup.3 /m.sup.3 (50 to 100 SCFB) to form an isomerization zone feed. The isomerization feed is contacted in an isomerization reaction zone with an isomerization catalyst comprising alumina having from 0.01 to 0.25 wt. % of platinum and from 2 to 10 wt. % of a chloride component at isomerization conditions. The effluent from the reaction zone enters a stabilizer where it is separated into a product stream of C.sub.4 -C.sub.7 hydrocarbons and a second gas stream which is removed from the process.The common hydrogen supply source and the low hydrogen to hydrocarbon ratios permit operation of the process without hydrogen recycle facilities between the hydrotreatment and isomerization steps and downstream of the isomerization reactor.
    • 通过在本发明的加氢处理和异构化步骤中使用普通的氢源和低的氢气与烃的比例,简化了加氢处理和异构化C4-C7原料的组合方法。 该方法向组合的加氢处理和异构化方法提供氢气,用于使包含C4-C7烃的进料流异构化。 烃进料流含有硫和氧污染物,并与含氢物流混合,其量可产生0.9stdm3 / m3(50SCFB)的最大氢烃比。 加氢处理剂进料在加氢处理反应器中与氧化铝载体上含有VIB族金属和第VII族金属的催化剂接触。 来自加氢处理器的流出物流入第一分离器,其将流出物分离成包含氢气,硫化氢和水的第一气流以及包含具有4-7个碳原子的烃的处理流。 第一个气流从该过程中被拒绝。 将处理过的物流与第二个含氢物流以一定比例混合,其中氢与烃之比为0.9至1.8 stdm3 / m3(50至100SCFB),形成异构化区进料。 异构化进料在异构化反应区中与包含氧化铝的异构化催化剂接触,所述氧化铝具有0.01至0.25wt。 %的铂和2〜10wt。 %的氯化物组分在异构化条件下。 来自反应区的流出物进入稳定剂,在其中将其分离成C4-C7烃的产物流和从该方法中除去的第二气流。 普通的氢气供应源和低的氢气与烃的比例允许在加氢处理和异构化步骤之间没有氢循环设施的操作,而异构化反应器的下游。