会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • DOPED-CARBON NANO-ARCHITECTURED STRUCTURES AND METHODS FOR FABRICATING SAME
    • 多孔碳纳米结构和其制造方法
    • US20130069011A1
    • 2013-03-21
    • US13702003
    • 2010-12-27
    • Jayan ThomasPalash GangopadhyayBinh Au Thanh Duong
    • Jayan ThomasPalash GangopadhyayBinh Au Thanh Duong
    • H01B1/04H01B13/00H01M4/587
    • H01B1/04B82Y40/00H01B13/00H01M4/587Y10S977/70Y10S977/887Y10S977/932Y10S977/948
    • In an exemplary method, a nano-architectured carbon structure is fabricated by forming a unit (e.g., a film) of a liquid carbon-containing starting material and at least one dopant. A surface of the unit is nano-molded using a durable mold that is pre-formed with a pattern of nano-concavities corresponding to a desired pattern of nano-features to be formed by the mold on the surface of the unit. After nano-molding the surface of the unit, the first unit is stabilized to render the unit and its formed nano-structures capable of surviving downstream steps. The mold is removed from the first surface to form a nano-molded surface of a carbonization precursor. The precursor is carbonized in an inert-gas atmosphere at a suitable high temperature to form a corresponding nano-architectured carbon structure. A principal use of the nano-architectured carbon structure is a carbon electrode used in, e.g., Li-ion batteries, supercapacitors, and battery-supercapacitor hybrid devices.
    • 在一个示例性方法中,通过形成含液体碳原料和至少一种掺杂剂的单元(例如膜)来制造纳米结构的碳结构。 该单元的表面使用耐久的模具进行纳米模塑,该耐久模具预先形成有对应于由模具表面上的模具形成的纳米特征的期望图案的纳米凹槽的图案。 在纳米成型单元的表面之后,第一单元被稳定以使单元和其形成的纳米结构能够在下游步骤中存活。 从第一表面去除模具以形成碳化前体的纳米模制表面。 将该前体在惰性气体气氛中在合适的高温下碳化,形成相应的纳米结构的碳结构。 纳米结构碳结构的主要用途是用于例如锂离子电池,超级电容器和电池 - 超级电容器混合器件中的碳电极。
    • 7. 发明申请
    • MAGNETIC-NANOPARTICLE-POLYMER COMPOSITES WITH ENHANCED MAGNETO-OPTICAL PROPERTIES
    • 具有增强磁光性能的磁纳米聚合物复合材料
    • US20120052286A1
    • 2012-03-01
    • US13320020
    • 2010-05-14
    • Robert A. NorwoodJayan ThomasPalash GangopadhyayAlejandra Lopez-Santiago
    • Robert A. NorwoodJayan ThomasPalash GangopadhyayAlejandra Lopez-Santiago
    • B32B5/16H01F1/00B82Y30/00
    • H01F1/0063B82Y25/00H01F1/0081H01F1/009H01F1/06H01F1/11H01F1/117Y10T428/25
    • Composites, designed “MNPC” materials, are formed by methods of which an exemplary method includes preparing a liquid suspension of magnetic nanoparticles in a carrier liquid in which the nanoparticles are not soluble. The carrier liquid can form a rigid polymer matrix for the nanoparticles whenever the carrier liquid is exposed to a rigidification condition. A first rigidification condition is applied to the suspension to rigidify the carrier liquid into the polymer matrix and thus form a rigid MNPC material. A fluidizing condition is applied to the rigid MNPC material to fluidize the matrix and allow movement of the nanoparticles in the matrix. While the matrix is fluid, the MNPC material is magnetically poled by exposure to an external magnetic field. Poling aligns at least some of the nanoparticles with the field and allows at least some particles to self-assemble with each other. While continuing the magnetic poling, a second rigidification condition is applied to the MNPC material to freeze further movement of the nanoparticles in the polymer matrix. The produced materials have enhanced properties including magneto-optical properties.
    • 复合材料,设计的“MNPC”材料是通过其方法形成的,其中一种示例性方法包括制备磁性纳米颗粒在其中不溶于纳米颗粒的载体液体中的液体悬浮液。 只要载体液体暴露于刚性状态,载体液体可以形成纳米颗粒的刚性聚合物基质。 对悬浮液施加第一硬化条件以将载体液体硬化到聚合物基质中,从而形成刚性MNPC材料。 将流化条件施加到刚性MNPC材料上以使基质流化并允许纳米颗粒在基质中的移动。 当基体是流体时,MNPC材料通过暴露于外部磁场被磁极化。 极化使至少一些纳米颗粒与场对准,并允许至少一些颗粒彼此自组装。 在继续磁极化的同时,向MNPC材料施加第二硬化条件以冻结纳米颗粒在聚合物基质中的进一步移动。 所生产的材料具有增强的性质,包括磁光性质。