会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Object recognition using Haar features and histograms of oriented gradients
    • 使用Haar特征的对象识别和定向梯度的直方图
    • US08447139B2
    • 2013-05-21
    • US13085985
    • 2011-04-13
    • Weiguang GuanNorman HaasYing LiSharathchandra Pankanti
    • Weiguang GuanNorman HaasYing LiSharathchandra Pankanti
    • G06K9/62G06K9/36
    • G06K9/00818G06K9/6257
    • A system and method to detect objects in a digital image. At least one image representing at least one frame of a video sequence is received. A sliding window of different window sizes at different locations is placed in the image. A cascaded classifier including a plurality of increasingly accurate layers is applied to each window size and each location. Each layer includes a plurality of classifiers. An area of the image within a current sliding window is evaluated using one or more weak classifiers in the plurality of classifiers based on at least one of Haar features and Histograms of Oriented Gradients features. An output of each weak classifier is a weak decision as to whether the area of the image includes an instance of an object of a desired object type. A location of the zero or more images associated with the desired object type is identified.
    • 一种用于检测数字图像中的对象的系统和方法。 接收表示视频序列的至少一帧的至少一个图像。 在不同位置的不同窗口大小的滑动窗口被放置在图像中。 包括多个越来越精确的层的级联分类器被应用于每个窗口大小和每个位置。 每个层包括多个分类器。 基于Haar特征和定向梯度特征的至少一个,使用多个分类器中的一个或多个弱分类器来评估当前滑动窗口内的图像的区域。 每个弱分类器的输出是关于图像的区域是否包括期望对象类型的对象的实例的弱决定。 识别与所需对象类型相关联的零个或多个图像的位置。
    • 5. 发明授权
    • Method and apparatus for inducing classifiers for multimedia based on unified representation of features reflecting disparate modalities
    • 基于反映不同模式的特征的统一表示来诱导多媒体分类器的方法和装置
    • US06892193B2
    • 2005-05-10
    • US09853191
    • 2001-05-10
    • Rudolf M. BolleNorman HaasFrank J. OlesTong Zhang
    • Rudolf M. BolleNorman HaasFrank J. OlesTong Zhang
    • G06F17/30G06K9/00G06F7/00G06F15/00
    • G06F17/30707G06F17/30253G06F17/30746G06F17/30787G06F17/30796G06F17/30802G06F17/30811G06K9/00711
    • This invention is a system and method to perform categorization (classification) of multimedia items. These items are comprised of a multitude of disparate information sources, in particular, visual information and textual information. Classifiers are induced based on combining textual and visual feature vectors. Textual features are the traditional ones, such as, word count vectors. Visual features include, but are not limited to, color properties of key intervals and motion properties of key intervals. The visual feature vectors are determined in such a fashion that the vectors are sparse. The vector components are features such as the absence or presence of the color green in spatial regions and the absence or the amount of visual flow in spatial regions of the media items. The text and the visual representation vectors are combined in a systematic and coherent fashion. This vector representation of a media item lends itself to well-established learning techniques. The resulting system, subject of this invention, categorizes (or classifies) media items based both on textual features and visual features.
    • 本发明是一种执行多媒体项目分类(分类)的系统和方法。 这些项目包括大量不同的信息来源,特别是视觉信息和文本信息。 基于组合文本和视觉特征向量来诱导分类器。 文字特征是传统的,例如字数向量。 视觉特征包括但不限于按键间隔的颜色属性和键间隔的运动属性。 以这样的方式确定视觉特征向量,使得向量是稀疏的。 矢量分量是诸如空间区域中不存在或存在绿色的特征,以及媒体项目的空间区域中的视觉流量的不存在或量。 文本和视觉表示向量以系统和连贯的方式组合。 媒体项目的向量表示方式适用于建立良好的学习技术。 本发明主题的所得系统基于文本特征和视觉特征对媒体项进行分类(或分类)。
    • 6. 发明授权
    • Multisensor evidence integration and optimization in object inspection
    • 多传感器证据整合和物体检测优化
    • US09260122B2
    • 2016-02-16
    • US13489489
    • 2012-06-06
    • Norman HaasYing LiCharles A. OttoSharathchandra U. PankantiHoang Trinh
    • Norman HaasYing LiCharles A. OttoSharathchandra U. PankantiHoang Trinh
    • B61L23/04G06T7/20
    • B61L23/042
    • Video image data is acquired from synchronized cameras having overlapping views of objects moving past the cameras through a scene image in a linear array and with a determined speed. Processing units generate one or more object detections associated with confidence scores within frames of the camera video stream data. The confidence scores are modified as a function of constraint contexts including a cross-frame constraint that is defined by other confidence scores of other object detection decisions from the video data that are acquired by the same camera at different times; a cross-view constraint defined by other confidence scores of other object detections in the video data from another camera with an overlapping field-of-view; and a cross-object constraint defined by a sequential context of a linear array of the objects, spatial attributes of the objects and the determined speed of the movement of the objects relative to the cameras.
    • 视频图像数据从同步摄像机获取,该相机具有通过线性阵列中的场景图像以确定的速度移动通过相机的对象的重叠视图。 处理单元产生与相机视频流数据的帧内的置信度分数相关联的一个或多个对象检测。 可信度分数被修改为约束上下文的函数,包括由不同时间由同一相机获取的视频数据的其他对象检测决定的其他置信度分数定义的跨帧约束; 由具有重叠视场的另一相机的视频数据中的其他对象检测的其他置信度得分定义的横视约束; 以及由对象的线性阵列,对象的空间属性和所确定的对象相对于照相机的移动速度的顺序上下文定义的跨对象约束。