会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • HYBRID PHOTOVOLTAICS BASED ON SEMICONDUCTOR NANOCRYSTALS AND AMORPHOUS SILICON
    • 基于半导体纳米晶体和非晶硅的混合光伏
    • US20100236614A1
    • 2010-09-23
    • US12701396
    • 2010-02-05
    • Victor I. KlimovAlp T. FindikogluBaoquan SunDonald J. WerderMilan Sykora
    • Victor I. KlimovAlp T. FindikogluBaoquan SunDonald J. WerderMilan Sykora
    • H01L31/00H01B1/04
    • H01L31/03529H01L31/03921H01L31/074Y02E10/50
    • Semiconductor nanocrystals (NCs) are promising materials for applications in photovoltaic (PV) structures that could benefit from size-controlled tunability of absorption spectra, the ease of realization of various tandem architectures, and perhaps, increased conversion efficiency in the ultraviolet through carrier multiplication. The first practical step toward utilization of the unique properties of NCs in PV technologies could be through their integration into traditional silicon-based solar cells. Here, we demonstrate an example of such hybrid PV structures that combine colloidal NCs with amorphous silicon. In these structures, NCs and silicon are electronically coupled, and the regime of this coupling can be tuned by altering the alignment of NC states with regard to silicon band edges. For example, using wide-gap CdSe NCs we demonstrate a photoresponse which is exclusively due to the NCs. On the other hand, in devices comprising narrow-gap PbS NCs, both the NCs and silicon contribute to photocurrent, which results in PV response extending from the visible to the near-infrared. This work demonstrates the feasibility of hybrid PV devices that combine advantages of mature silicon fabrication technologies with the unique electronic properties of semiconductor NCs.
    • 半导体纳米晶体(NC)是用于光伏(PV)结构的有希望的材料,可以受益于吸收光谱的尺寸控制可调谐性,各种串联架构的实现的容易性,以及通过载波倍增增加紫外线的转换效率。 使用光伏技术中NC的独特性能的第一个实际步骤可以是通过与传统的硅基太阳能电池的集成。 在这里,我们演示了将胶体NC与非晶硅组合的混合PV结构的一个例子。 在这些结构中,NC和硅是电耦合的,并且可以通过改变关于硅带边缘的NC状态的对准来调节该耦合的状态。 例如,使用宽间隙CdSe NC,我们展示了仅由NCs引起的光响应。 另一方面,在包含窄间隙PbS NC的器件中,NC和硅都有助于光电流,这导致PV响应从可见光延伸到近红外。 这项工作展示了将成熟硅制造技术的优点与半导体NC的独特电​​子性能相结合的混合光伏器件的可行性。
    • 8. 发明申请
    • QUANTUM DOT SENSITIZED SOLAR CELL
    • 量子密度太阳能电池
    • US20120103404A1
    • 2012-05-03
    • US13274675
    • 2011-10-17
    • Nobuhiro FukeAlexey Y. KoposovMilan SykoraLaura B. HochVirginia W. Manner
    • Nobuhiro FukeAlexey Y. KoposovMilan SykoraLaura B. HochVirginia W. Manner
    • H01L31/0725H01L29/66
    • H01G9/2031H01G9/2054H01M14/005Y02E10/542
    • Photoelectrochemical solar cells (PECs) consisting of a photoanode were prepared by direct deposition of independently synthesized CdSe nanocrystal quantum dots (NQDs) onto a nanocrystalline TiO2 film (NQD/TiO2), aqueous Na2S or Li2S electrolyte and a Pt counter electrode. The light harvesting efficiency (LHE) of the NQD/TiO2 photoanode is significantly enhanced when the NQD surface passivation is changed from tri-n-octylphosphine oxide (TOPO) to a smaller ligand (e.g. n-butylamine (BA)). Using NQDs with a shorter passivating ligand, BA, leads to a significant enhancement in both the electron injection efficiency at the NQD/TiO2 interface and charge collection efficiency at the NQD/electrolyte interface, with the latter attributed mostly to a more efficient diffusion of the electrolyte through the pores of the photoanode. By utilizing BA capped NQDs and aqueous Li2S as an electrolyte, it is possible to achieve about 100% internal quantum efficiency of photon-to-electron conversion, matching the performance of dye sensitized solar cells.
    • 通过将独立合成的CdSe纳米晶体量子点(NQD)直接沉积到纳米晶体TiO 2膜(NQD / TiO 2),Na 2 S或Li 2 S水溶液和Pt对电极上来制备由光电阳极组成的光电化学太阳能电池(PEC)。 当NQD表面钝化从三正辛基氧化膦(TOPO)改变为较小配体(例如正丁胺(BA))时,NQD / TiO2光阳极的光收获效率(LHE)显着提高。 使用具有更短钝化配体的NQD,BA导致在NQD / TiO 2界面处的电子注入效率和NQD /电解质界面处的电荷收集效率的显着增强,后者主要归因于更有效的扩散 电解质通过光阳极的孔。 通过使用BA封端的NQD和Li2S水溶液作为电解质,可以实现大约100%的光子到电子转换的内部量子效率,匹配染料敏化太阳能电池的性能。