会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Method and system for generating an image of the radiation density of a source of photons located in an object
    • 用于产生位于物体中的光子源的辐射密度的图像的方法和系统
    • US06881959B2
    • 2005-04-19
    • US10285211
    • 2002-10-31
    • Ling Jian MengNeal H. ClinthorneW. Leslie RogersDavid K. Wehe
    • Ling Jian MengNeal H. ClinthorneW. Leslie RogersDavid K. Wehe
    • G01T1/164G01T1/20
    • G01T1/1642A61B6/037A61B6/4258
    • Method and system for generating an image of the radiation density of a source of photons located in an object wherein Compton scattering and non-Compton scattering events are detected and contained within data used for image reconstruction. The system includes a multiple pinhole collimator, a position sensitive scintillation detector as used in standard Gamma cameras, and a silicon pad detector array inserted between the collimator and the scintillation detector. The problem of multiplexing, normally associated with multiple pinhole systems, is reduced by using the extra information from the detected Compton scattering events. For properly selected pinhole spacing, this leads to a significantly improved image quality. A valuable enhancement can be achieved when adding only a small fraction of gamma rays with reduced angular ambiguity. The system does not require a highly optimized Compton camera behind the collimator.
    • 用于产生位于物体中的光子源的辐射密度的图像的方法和系统,其中检测并包含在用于图像重建的数据内的康普顿散射和非康普顿散射事件。 该系统包括多个针孔准直器,用于标准伽马照相机的位置敏感闪烁检测器,以及插入在准直器和闪烁检测器之间的硅垫检测器阵列。 通常使用来自检测到的康普顿散射事件的额外信息来减少通常与多个针孔系统相关的多路复用问题。 为了正确选择针孔间距,这导致显着提高的图像质量。 当仅加入少量具有减小的角度模糊度的伽马射线时,可以实现有价值的增强。 该系统不需要在准直仪后面高度优化的康普顿相机。
    • 5. 发明授权
    • Gamma-ray spectrometry
    • 伽马射线光谱法
    • US06940071B2
    • 2005-09-06
    • US10398973
    • 2001-10-11
    • David RamsdenLing-Jian MengOleg IvanovSergei Ignatov
    • David RamsdenLing-Jian MengOleg IvanovSergei Ignatov
    • G01T1/20G01T1/24G01T1/36
    • G01T1/20
    • Different geometries of scintillation spectrometers are disclosed which provide improved resolution over prior art scintillation spectrometers. By ensuring that photons generated by scintillation events occurring in different locations within the scintillation material generate similar light profiles on the photo-detector, the output signal is made less sensitive to the initial interaction site. This can be achieved in a number of ways, such as: by limiting the exit window of the scintillation crystal to a smaller detector, by introducing an optical spacer (94) between the scintillation crystal and detector (99), and/or by making the crystal longer than necessary to stop the gamma rays. A principal advantage of these new geometries is that deconvolution of the raw-data is more effective, thus improving resolution.
    • 公开了闪烁光谱仪的不同几何形状,其提供了比现有技术闪烁光谱仪改进的分辨率。 通过确保发生在闪烁材料内的不同位置的闪烁事件产生的光子在光检测器上产生类似的光谱,使得输出信号对初始相互作用位点不太敏感。 这可以通过在闪烁晶体和检测器(99)之间引入光学间隔物(94)和/或通过将闪烁晶体和检测器(99)之间引入光学间隔物(94)来限制闪烁晶体的出射窗口到较小的检测器来实现, 晶体长于停止伽马射线所需的时间。 这些新几何的主要优点是原始数据的去卷积更有效,从而提高了分辨率。
    • 6. 发明授权
    • Method and apparatus for measuring properties of a compound
    • 用于测量化合物性质的方法和装置
    • US08565376B2
    • 2013-10-22
    • US12986160
    • 2011-01-06
    • Ling Jian Meng
    • Ling Jian Meng
    • G01N23/223G01T1/36G21K1/02
    • G01N23/223
    • A system that incorporates teachings of the present disclosure may include, for example, an apparatus having a collimator having at least one aperture and a fluorescence detector. The collimator can be positioned next to a compound. The compound can emit fluorescence X-rays when impacted by an X-ray beam generated by an X-ray source. The collimator can absorb at least a first portion of the fluorescence X-rays emitted by the compound and release at least a second portion of the fluorescence X-rays at the at least one aperture. The second portion of the fluorescence X-rays released by the at least one aperture have known directional information based on a position of the collimator. The fluorescence detector can detect the second portion of the fluorescence X-rays released by the at least one aperture. A three-dimensional (3-D) rendering of an elemental distribution of the compound can be determined from the fluorescence X-rays detected and the directional information. Additional embodiments are disclosed.
    • 结合本公开的教导的系统可以包括例如具有具有至少一个孔的准直仪和荧光检测器的装置。 准直器可以位于化合物旁边。 当由X射线源产生的X射线束撞击时,化合物可以发射荧光X射线。 准直器可以吸收由化合物发射的荧光X射线的至少第一部分,并在至少一个孔处释放荧光X射线的至少第二部分。 由至少一个孔释放的荧光X射线的第二部分基于准直仪的位置具有已知的方向信息。 荧光检测器可以检测由至少一个孔释放的荧光X射线的第二部分。 可以从所检测的荧光X射线和方向信息中确定化合物的元素分布的三维(3-D)渲染。 公开了另外的实施例。
    • 7. 发明申请
    • METHOD AND APPARATUS FOR MEASURING PROPERTIES OF A COMPOUND
    • 测定化合物性质的方法和装置
    • US20110188629A1
    • 2011-08-04
    • US12986160
    • 2011-01-06
    • LING JIAN MENG
    • LING JIAN MENG
    • G01N23/223
    • G01N23/223
    • A system that incorporates teachings of the present disclosure may include, for example, an apparatus having a collimator having at least one aperture and a fluorescence detector. The collimator can be positioned next to a compound. The compound can emit fluorescence X-rays when impacted by an X-ray beam generated by an X-ray source. The collimator can absorb at least a first portion of the fluorescence X-rays emitted by the compound and release at least a second portion of the fluorescence X-rays at the at least one aperture. The second portion of the fluorescence X-rays released by the at least one aperture have known directional information based on a position of the collimator. The fluorescence detector can detect the second portion of the fluorescence X-rays released by the at least one aperture. A three-dimensional (3-D) rendering of an elemental distribution of the compound can be determined from the fluorescence X-rays detected and the directional information. Additional embodiments are disclosed.
    • 结合本公开的教导的系统可以包括例如具有具有至少一个孔的准直仪和荧光检测器的装置。 准直器可以位于化合物旁边。 当由X射线源产生的X射线束撞击时,化合物可以发射荧光X射线。 准直器可以吸收由化合物发射的荧光X射线的至少第一部分,并在至少一个孔处释放荧光X射线的至少第二部分。 由至少一个孔释放的荧光X射线的第二部分基于准直仪的位置具有已知的方向信息。 荧光检测器可以检测由至少一个孔释放的荧光X射线的第二部分。 可以从所检测的荧光X射线和方向信息中确定化合物的元素分布的三维(3-D)渲染。 公开了另外的实施例。