会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • NANOGRAPHITE STRUCTURE/METAL NANOPARTICLE COMPOSITE
    • 纳米结构/金属纳米复合材料
    • US20100029910A1
    • 2010-02-04
    • US11767583
    • 2007-06-25
    • Kiyotaka ShibaKenichi SanoKenji Iwahori
    • Kiyotaka ShibaKenichi SanoKenji Iwahori
    • C07K14/00
    • C07K14/47B82Y30/00B82Y40/00C01B32/174C01B32/18C01B2202/02
    • The present invention makes it possible to efficiently recognize carbon nanotubes, carbon nanohorns or modifiers thereof and to support functional compounds by fusing the ability of ferritin molecules capable of forming nanoparticles of inorganic metal atoms or inorganic metal compounds. In addition, because ferritin molecules are capable of forming two-dimensional crystals at the interface, the present invention makes it possible to align carbon nanotubes, carbon nanohorns with the use of the molecular arrangement ability of ferritin fused with nanographite structure recognition peptides. A nanographite structure/metal nanoparticle composite is constructed, wherein a nanoparticle of an inorganic metal atom or an inorganic metal compound is retained in an interior space of a protein in which a nanographite structure recognition peptide is fused or chemically bound to a surface of a cage protein such as ferritin, and wherein a plurality of nanoparticles of an inorganic metal atom or an inorganic metal compound are supported on a nanographite structure with the use of affinity of the nanographite structure recognition peptide to the nanographite structure.
    • 本发明使得能够有效地识别碳纳米管,碳纳米角或其改性剂,并且通过融合能够形成无机金属原子或无机金属化合物的纳米颗粒的铁蛋白分子的能力来支持功能性化合物。 此外,由于铁蛋白分子能够在界面处形成二维晶体,​​因此本发明可以利用与纳米结构识别肽融合的铁蛋白的分子排列能力来对准碳纳米管,碳纳米角。 构建纳米结构/金属纳米颗粒复合物,其中无机金属原子或无机金属化合物的纳米颗粒保留在蛋白质的内部空间中,其中纳米结构识别肽与笼的表面融合或化学结合 蛋白质如铁蛋白,并且其中使用纳米尺度结构识别肽与纳米尺度结构的亲和力将纳米尺度结构上的无机金属原子或无机金属化合物的多个纳米颗粒负载在纳米尺度结构上。
    • 3. 发明授权
    • Human alanyl-tRNA synthetase proteins, nucleic acids and tester strains
comprising same
    • 人丙氨酰-tRNA合成酶蛋白,包含其的核酸和测试菌株
    • US5629188A
    • 1997-05-13
    • US426236
    • 1995-04-21
    • Kiyotaka ShibaPaul R. SchimmelTracy L. Ripmaster
    • Kiyotaka ShibaPaul R. SchimmelTracy L. Ripmaster
    • C12N9/00C07H21/04C12N1/14C12N1/20
    • C12N9/93
    • Isolated, recombinant nucleic acids which encode alanyl-tRNA synthetase (AlaRS) of human origin have been used to make expression constructs and transformed host cells for the production of recombinant human AlaRS. The recombinant enzyme has been purified, and is active in the specific aminoacylation of tRNA by alanine. The isolated, recombinant human AlaRS is also recognized by antibodies made by patients with the particular autoimmune disease known as "antisynthetase syndrome" in which the patients produce antibodies against the human alanyl-tRNA synthetase in their own cells. Thus, the isolated, recombinant enzyme, and antibodies made specifically thereto, can be useful in assays to diagnose and monitor this disease. The essential alanyl-tRNA synthetases of microbes pathogenic in humans can be the targets of inhibitory agents having antimicrobial activity. The human alanyl-tRNA synthetase, isolated and purified, can be used to assess the toxic effect in humans of such an inhibitory agent in various biochemical activity assays. This human enzyme can also be expressed in "tester strains," whose cells rely upon the function of the human alanyl-tRNA synthetase for tRNA.sup.Ala charging. Such tester strains can be used to test for any toxic effects of an antimicrobial agent that specifically interacts with the heterologous human AlaRS gene or gene product.
    • 已经使用编码人来源的丙氨酰-tRNA合成酶(AlaRS)的分离的重组核酸来制备表达构建体和转化的宿主细胞用于重组人AlaRS的产生。 重组酶已经纯化,并且在丙氨酸特异性氨酰化tRNA中具有活性。 分离的重组人AlaRS也被称为“反合成酶综合征”的特定自身免疫性疾病患者产生的抗体识别,其中患者在其自身的细胞中产生抗人丙氨酰-tRNA合成酶的抗体。 因此,分离的重组酶和特异性制备的抗体可用于诊断和监测该疾病的测定中。 人类致病微生物的必需丙氨酰-tRNA合成酶可以是具有抗微生物活性的抑制剂的靶标。 分离和纯化的人丙氨酰-tRNA合成酶可以用于在各种生物化学活性测定中评估这种抑制剂在人体中的毒性作用。 这种人类酶也可以在“测试菌株”中表达,其细胞依赖于人类丙氨酰-tRNA合成酶对tRNAAla充电的功能。 这样的测试菌株可用于测试与异源人AlaRS基因或基因产物特异性相互作用的抗微生物剂的任何毒性作用。
    • 4. 发明授权
    • Three-dimensional structure of functional material
    • 功能材料的三维结构
    • US08796417B2
    • 2014-08-05
    • US11915480
    • 2006-05-24
    • Kiyotaka ShibaKenichi Sano
    • Kiyotaka ShibaKenichi Sano
    • C07K7/06B32B5/16C23C28/04C07K14/79C07K7/08B82Y30/00C23C26/00
    • C23C26/00B82Y30/00C07K7/06C07K7/08C07K14/79C23C28/042C23C28/048Y10T428/25Y10T428/31725
    • It is to provide an inorganic thin film of titanium dioxide or the like which is controlled at the nanoscale and a three-dimensional structure of a functional material such as semiconductor nanoparticles. A three-dimensional structure of an inorganic material is manufactured by introducing onto a surface of an inorganic substrate ferritin presenting on its surface a plurality of inorganic material-binding peptides; binding the ferritin in a monolayer onto the inorganic substrate; introducing an inorganic material onto the ferritin which is bound in a monolayer, while the inorganic material-binding peptides is having a binding and/or biomineralization ability for the inorganic material; forming a biomineral layer utilizing the biomineralization ability of the inorganic material-binding peptides; and subsequently repeating one or more times the steps (a) and (b) of a multilayering operation: (a) introducing onto the biomineral layer thus formed the ferritin having a binding ability to the biomineral layer, and binding the ferritin in a monolayer onto the biomineral layer; (b) introducing the inorganic material onto the surface of the ferritin which is bound in a monolayer, and forming a biomineral layer.
    • 提供以纳米级控制的二氧化钛等的无机薄膜和诸如半导体纳米颗粒的功能材料的三维结构。 无机材料的三维结构通过在其表面上呈现多个无机材料结合肽的无机底物铁蛋白的表面上引入而制造; 将单层铁蛋白结合到无机基底上; 将无机材料引入到单层结合的铁蛋白上,而无机材料结合肽具有对于无机材料的结合和/或生物矿化能力; 利用无机材料结合肽的生物矿化能力形成生物矿物层; 并随后重复一次或多次多层操作的步骤(a)和(b):(a)将由此形成的生物矿物层引入具有生物矿物层的结合能力的铁蛋白,并将单层铁蛋白结合到 生物矿物层; (b)将无机材料引入到以单层结合的铁蛋白的表面上,并形成生物矿物层。
    • 5. 发明授权
    • Nanographite structure/metal nanoparticle composite
    • 纳米晶体结构/金属纳米颗粒复合材料
    • US08017729B2
    • 2011-09-13
    • US11767583
    • 2007-06-25
    • Kiyotaka ShibaKenichi SanoKenji Iwahori
    • Kiyotaka ShibaKenichi SanoKenji Iwahori
    • A61K38/00A61K38/04C07K5/00C07K7/00C07K16/00C07K17/00
    • C07K14/47B82Y30/00B82Y40/00C01B32/174C01B32/18C01B2202/02
    • The present invention makes it possible to efficiently recognize carbon nanotubes, carbon nanohorns or modifiers thereof and to support functional compounds by fusing the ability of ferritin molecules capable of forming nanoparticles of inorganic metal atoms or inorganic metal compounds. In addition, because ferritin molecules are capable of forming two-dimensional crystals at the interface, the present invention makes it possible to align carbon nanotubes, carbon nanohorns with the use of the molecular arrangement ability of ferritin fused with nanographite structure recognition peptides. A nanographite structure/metal nanoparticle composite is constructed, wherein a nanoparticle of an inorganic metal atom or an inorganic metal compound is retained in an interior space of a protein in which a nanographite structure recognition peptide is fused or chemically bound to a surface of a cage protein such as ferritin, and wherein a plurality of nanoparticles of an inorganic metal atom or an inorganic metal compound are supported on a nanographite structure with the use of affinity of the nanographite structure recognition peptide to the nanographite structure.
    • 本发明使得能够有效地识别碳纳米管,碳纳米角或其改性剂,并且通过融合能够形成无机金属原子或无机金属化合物的纳米颗粒的铁蛋白分子的能力来支持功能性化合物。 此外,由于铁蛋白分子能够在界面处形成二维晶体,​​因此本发明可以利用与纳米结构识别肽融合的铁蛋白的分子排列能力来对准碳纳米管,碳纳米角。 构建纳米结构/金属纳米颗粒复合物,其中无机金属原子或无机金属化合物的纳米颗粒保留在蛋白质的内部空间中,其中纳米结构识别肽与笼的表面融合或化学结合 蛋白质如铁蛋白,并且其中使用纳米尺度结构识别肽与纳米尺度结构的亲和力将纳米尺度结构上的无机金属原子或无机金属化合物的多个纳米颗粒负载在纳米尺度结构上。
    • 6. 发明申请
    • Three-Dimensional Structure of Functional Material
    • 功能材料的三维结构
    • US20100040862A1
    • 2010-02-18
    • US11915480
    • 2006-05-24
    • Kiyotaka ShibaKenichi Sano
    • Kiyotaka ShibaKenichi Sano
    • B32B5/16C07K7/06C07K7/08C07K14/795B05D1/36B32B27/34
    • C23C26/00B82Y30/00C07K7/06C07K7/08C07K14/79C23C28/042C23C28/048Y10T428/25Y10T428/31725
    • It is to provide an inorganic thin film of titanium dioxide or the like which is controlled at the nanoscale and a three-dimensional structure of a functional material such as semiconductor nanoparticles. A three-dimensional structure of an inorganic material is manufactured by introducing onto a surface of an inorganic substrate ferritin presenting on its surface a plurality of inorganic material-binding peptides; binding the ferritin in a monolayer onto the inorganic substrate; introducing an inorganic material onto the ferritin which is bound in a monolayer, while the inorganic material-binding peptides is having a binding and/or biomineralization ability for the inorganic material; forming a biomineral layer utilizing the biomineralization ability of the inorganic material-binding peptides; and subsequently repeating one or more times the steps (a) and (b) of a multilayering operation: (a) introducing onto the biomineral layer thus formed the ferritin having a binding ability to the biomineral layer, and binding the ferritin in a monolayer onto the biomineral layer; (b) introducing the inorganic material onto the surface of the ferritin which is bound in a monolayer, and forming a biomineral layer.
    • 提供以纳米级控制的二氧化钛等的无机薄膜和诸如半导体纳米颗粒的功能材料的三维结构。 无机材料的三维结构通过在其表面上呈现多个无机材料结合肽的无机底物铁蛋白的表面上引入而制造; 将单层铁蛋白结合到无机基底上; 将无机材料引入到单层结合的铁蛋白上,而无机材料结合肽具有对于无机材料的结合和/或生物矿化能力; 利用无机材料结合肽的生物矿化能力形成生物矿物层; 并随后重复一次或多次多层操作的步骤(a)和(b):(a)将由此形成的生物矿物层引入具有生物矿物层的结合能力的铁蛋白,并将单层铁蛋白结合到 生物矿物层; (b)将无机材料引入到以单层结合的铁蛋白的表面上,并形成生物矿物层。