会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Rotor blade flap driving apparatus
    • 转子叶片挡板驱动装置
    • US06273681B1
    • 2001-08-14
    • US09517722
    • 2000-03-02
    • Eiichi YamakawaTatsuro Hongu
    • Eiichi YamakawaTatsuro Hongu
    • B64C27615
    • B64C27/001B64C27/615B64C2027/7283B64C2027/7294Y02T50/34Y10T74/18992
    • An actuator and first to fourth links constitute a first displacement magnifying mechanism. An input shaft which is fixed in a basal end of the first and second links, a support shaft which is fixed in a basal end of the third and fourth links, and a displacement magnifying lever constitute a second displacement magnifying mechanism. In the displacement magnifying lever, an intermediate portion is angularly displaceably coupled to a tip end of the support shaft, a tip end of the input shaft is angularly displaceably coupled to one end, and an output rod is angularly displaceably coupled to another end. The expansion and contraction of the actuator are magnified by the first and second displacement magnifying mechanisms so as to drive a flap angularly via output rod. According to this configuration, the displacement of the actuator can be largely magnified so that the flap can be sufficiently angularly displaced in the vertical direction and in a reciprocal manner.
    • 致动器和第一至第四连杆构成第一位移放大机构。 固定在第一和第二连杆的基端的输入轴,固定在第三和第四连杆的基端的支撑轴和位移放大杆构成第二位移放大机构。 在位移放大杆中,中间部分以可角度方式可移动地联接到支撑轴的末端,输入轴的顶端可角度地可移动地联接到一端,并且输出杆成角度地可移动地联接到另一端。 致动器的膨胀和收缩由第一和第二位移放大机构放大,以通过输出杆角度地驱动翼片。 根据该结构,致动器的位移可以大幅度地放大,使得翼片能够在垂直方向和倒数方向上被充分地角度位移。
    • 3. 发明授权
    • helicopter blade aerofoil
    • 直升机叶片机翼
    • US5957662A
    • 1999-09-28
    • US945300
    • 1997-10-17
    • Makoto AokiHiroki NishimuraEiichi Yamakawa
    • Makoto AokiHiroki NishimuraEiichi Yamakawa
    • B64C27/46B64C3/14B64C27/467
    • B64C27/467B64C3/14Y10S416/02Y10S416/05
    • In a helicopter blade aerofoil, upper and lower surfaces thereof are defined by the following coordinates, and the leading edge profile of the aerofoil is defined by the following leading edge radius and center of circle. Thus drag divergence Mach number Mdd and maximum lift coefficient Clmax can be increased and the level of noise can be reduced.______________________________________X/C Yup/C Ylow/C______________________________________0.00000 0.00000 0.000000.00250 0.00781 -0.005580.00500 0.01131 -0.007650.00750 0.01423 -0.008740.01000 0.01660 -0.009640.01750 0.02224 -0.011560.02500 0.02658 -0.012760.50000 0.03585 -0.015680.07500 0.04128 -0.017580.10000 0.04480 -0.019010.15000 0.04893 -0.021130.20000 0.05095 -0.023060.25000 0.05181 -0.024920.30000 0.05200 -0.026470.35000 0.05179 -0.027600.40000 0.05129 -0.028210.45000 0.05038 -0.028270.50000 0.04888 -0.027750.55000 0.04673 -0.026620.60000 0.04393 -0.024910.65000 0.04037 -0.022680.70000 0.03592 -0.019960.75000 0.03052 -0.016820.80000 0.02430 -0.013370.85000 0.01751 -0.009740.90000 0.01046 -0.005970.95000 0.00407 -0.002361.00000 0.00207 -0.00079______________________________________ Leading edge radius r/C = 0.00844, Center of circle X/C = 0.00842, Y/C = 0.00064,
    • PCT No.PCT / JP97 / 00674 Sec。 371日期1997年10月17日第 102(e)1997年10月17日PCT 1997年3月5日PCT公布。 公开号WO97 / 32780 PCT 日期1997年9月12日在直升机叶片机翼中,其上表面和下表面由以下坐标限定,机翼的前缘轮廓由以下前缘半径和圆心定义。 因此,可以增加拖曳发散马赫数Mdd和最大提升系数Clmax,并且可以降低噪声水平。 - X / C Yup / C Ylow / C - 0.00000 0.00000 0.00000 - 0.00250 0.00781 -0.00558 - 0.00500 0.01131 -0.00765 - 0.00750 0.01423 -0.00874 - 0.01000 0.01660 -0.00964 - 0.01750 0.02224 -0.01156 - 0.02500 0.02658 -0.01276 - 0.50000 0.03585 -0.01568 - 0.07500 0.04128 -0.01758 -0.10000 0.04480 -0.01901-0.15000 0.04893 -0.02113 -0.20000 0.05095 -0.02306 -0.25000 0.05181 -0.02492-0.30000 0.05200 -0.02647 -0.35000 0.05179 -0.02760-0.40000 0.05129 -0.02821-0.45000 0.05038 -0.02827-0.50000 0.04888 -0.02775 - 0.55000 0.04673 -0.02662 - 0.60000 0.04393 -0.02491 - 0.65000 0.04037 -0.02268 - 0.70000 0.03592 -0.01996 - 0.75000 0.03052 -0.01682 - 0.80000 0.02430 -0.01337 - 0.85000 0.01751 -0.00974 - 0.90000 0.01046 -0.00597 - 0.95000 0.00407 -0.00236 - 1.00000 0.00207 -0.00079 - 前缘半径r / C = 0.00844, - 圆心X / C = 0.00842,Y / C = 0.00064, -
    • 6. 发明授权
    • Flight path indicated apparatus
    • 飞行路线指示装置
    • US06272404B1
    • 2001-08-07
    • US09250281
    • 1999-02-16
    • Takaki AmanoEiichi Yamakawa
    • Takaki AmanoEiichi Yamakawa
    • G01C2300
    • G01C23/005G02B27/01
    • A flight path display apparatus provided in a cockpit of an aircraft has a head-up display unit. An image combining panel of the head-up display unit displays a flight path image projected from projecting system which is superimposed on the outside view. Computing system for calculating the image to be projected to the image combining panel calculates a display position of the target flight path based on data from storage system in which predetermined flight paths are stored and from aircraft flight data measuring system for measuring the position and attitude of the aircraft. When the display position of the target flight path is outside a display area of the image combining panel, a target mark indicative of a direction toward the flight path from the center of the display area blinks on the image combining panel. With the above construction, a flight path display apparatus which allows a pilot to keep sight on a target flight path is realized.
    • 设置在飞行器的驾驶舱中的飞行路径显示装置具有平视显示单元。 平视显示单元的图像组合面板显示从投影系统投影的飞行路径图像,其叠加在外部视野上。 用于计算要投影到图像组合面板的图像的计算系统基于存储有预定飞行路径的存储系统的数据和用于测量位置和姿态的飞行器飞行数据测量系统来计算目标飞行路径的显示位置 飞机。 当目标飞行路径的显示位置在图像合成面板的显示区域之外时,表示从显示区域的中心向飞行路径的方向的目标标记在图像合成面板上闪烁。 通过上述结构,可以实现使飞行员能够保持瞄准目标飞行路径的飞行路径显示装置。
    • 7. 发明授权
    • Rotor blade flap drive apparatus
    • 转子叶片挡板驱动装置
    • US06499690B1
    • 2002-12-31
    • US09673980
    • 2000-12-06
    • Noriaki KatayamaTatsuro HonguEiichi Yamakawa
    • Noriaki KatayamaTatsuro HonguEiichi Yamakawa
    • B64C2700
    • B64C27/615B64C2027/7266B64C2027/7272Y02T50/34
    • Displacements of output portions 35, 36 of a pair of piezoelectric actuators 25, 26 arranged spanwise in a flap drive apparatus are magnified by a displacement magnification mechanism 27 so that a swing arm 28 is driven in swinging fashion with large amplitude. A flap 22 attached to the trailing edge of a blade 21 by way of a connecting rod 30 connected to a tip of the swing arm 28 is driven in vertical angular displacement fashion. The displacement magnification mechanism 27 possesses an eccentric shaft 40 has a first shaft 41 and second shaft 42 with offset axes. An output portion 35 is coupled to the first shaft 41, and an output portion 36 is coupled to the second shaft 42. The swing arm 28 is fixed to the eccentric shaft 40. Displacement of the output portions 35, 36 of the actuators 25, 26 in opposite phase results in a stable swing of the swing arm 28.
    • 在翼片驱动装置中翼展地布置的一对压电致动器25,26的输出部分35,36的位移由位移放大机构27放大,使得摆动臂28以大幅度的摆动方式被驱动。 通过连接到摆臂28的尖端的连杆30连接到叶片21的后缘的翼片22以垂直角位移方式被驱动。 位移放大机构27具有偏心轴40,具有第一轴41和具有偏移轴的第二轴42。 输出部分35联接到第一轴41,并且输出部分36联接到第二轴42.摆臂28固定到偏心轴40.致动器25的输出部分35,36的位移, 26相反地导致摆臂28的稳定摆动。
    • 8. 发明授权
    • Helicopter blade aerofoil and helicopter blade
    • 直升机叶片翼型和直升机叶片
    • US06315522B1
    • 2001-11-13
    • US09511802
    • 2000-02-23
    • Eiichi YamakawaAkihiko TsuchihashiKenjiro Inagaki
    • Eiichi YamakawaAkihiko TsuchihashiKenjiro Inagaki
    • B63H126
    • B64C27/467Y10S416/05
    • Upper and lower faces of a helicopter blade aerofoil are defined by the following coordinates. TABLE 1 X/C Yup/C Ylow/C 0.00000 0.00000  0.00000 0.00100 0.00511 −0.00584 0.00250 0.00843 −0.00813 0.00500 0.01218 −0.01014 0.00750 0.01505 −0.01136 0.01000 0.01747 −0.01218 0.01250 0.01959 −0.01277 0.01500 0.02150 −0.01328 0.01750 0.02325 −0.01375 0.02000 0.02487 −0.01415 0.02500 0.02780 −0.01483 0.05000 0.03891 −0.01714 0.07500 0.04682 −0.01862 0.10000 0.05291 −0.01979 0.15000 0.06152 −0.02206 0.20000 0.06666 −0.02470 0.25000 0.06892 −0.02729 0.30000 0.06895 −0.02949 0.35000 0.06841 −0.03109 0.40000 0.06744 −0.03211 0.45000 0.06568 −0.03270 0.50000 0.06301 −0.03272 0.55000 0.05943 −0.03211 0.60000 0.05498 −0.03084 0.65000 0.04968 −0.02883 0.70000 0.04349 −0.02600 0.75000 0.03649 −0.02237 0.80000 0.02886 −0.01794 0.85000 0.02087 −0.01315 0.90000 0.01279 −0.00777 0.95000 0.00538 −0.00304 1.00000 0.00236 −0.00095 leading edge radius r/C=0.0096 center of circle X/C=0.0097, Y/C=−0.0018 Accordingly, the maximum lift coefficient Clmax is large in a wide velocity range from lower velocity to higher velocity, and reduction of noise level and pitching moment can be achieved.
    • 直升机叶片机翼的上下面由以下坐标定义:前缘半径r / C = 0.0096圆心X / C = 0.0097,Y / C = -0.0018因此,最大升力系数Clmax大 可以实现从较低速度到较高速度的宽速度范围,以及噪声水平和俯仰力矩的降低。
    • 9. 发明授权
    • Low-noise level landing apparatus and system for helicopters
    • 用于直升机的低噪声平台着陆装置和系统
    • US06198991B1
    • 2001-03-06
    • US09250276
    • 1999-02-16
    • Eiichi YamakawaNatsuki KondoHiroki Nishimura
    • Eiichi YamakawaNatsuki KondoHiroki Nishimura
    • D05D100
    • G08G5/025G05D1/0676G05D1/0858
    • A low-noise level landing apparatus for helicopters comprises a helicopter position calculator for calculating the position of the helicopter, a data input device, an air data sensor for measuring an airspeed and a descending angle, a rotor tachometer for detecting a rotor rotational speed, a memory and a fuel gauge for calculating the weight of the helicopter, a rotor rotational speed controller for controlling the rotor rotational speed, a BVI noise generating area database device for storing noise levels in accordance with parameters of descending speed, airspeed, descending angle, rotor rotational speed and weight of the helicopter. A computer selects a flight route, an airspeed, a descending angle and a rotor rotational speed wherein noise is reduced, by setting a plurality of flight routes on the basis of the helicopter position and landing point and by referring to the noise generating area database device. Low-noise level landing is then carried out by pilot manual control or automatic flight control. By modifying the selected flight route on the basis of ground noise data received by a data receiver, the optimal flight route is reselected. As a result, a flight route wherein noise reduction can be attained during landing can be selected more properly.
    • 用于直升机的低噪声级着陆装置包括用于计算直升机位置的直升机位置计算器,数据输入装置,用于测量空速和下降角的空气数据传感器,用于检测转子转速的转子转速计, 用于计算直升机重量的存储器和燃料计,用于控制转子转速的转子转速控制器,用于根据下降速度,空速,下降角等参数存储噪声水平的BVI噪声产生区域数据库装置, 转子转速和直升机的重量。 计算机通过基于直升机位置和着陆点设置多个飞行路线并通过参考噪声产生区域数据库设备来选择飞行路线,空速,下降角度和转子旋转速度,其中噪声降低 。 然后通过飞行员手动控制或自动飞行控制进行低噪声级别着陆。 通过根据数据接收机接收到的地面噪声数据修改所选择的飞行路线,重新选择最佳飞行路线。 结果,可以更适当地选择在着陆期间可以获得降噪的飞行路线。
    • 10. 发明授权
    • Rotor blade for rotorcraft
    • 旋翼飞轮转子叶片
    • US06190132B1
    • 2001-02-20
    • US09404824
    • 1999-09-24
    • Eiichi YamakawaAtsushi MurashigeTomoka Tsujiuchi
    • Eiichi YamakawaAtsushi MurashigeTomoka Tsujiuchi
    • B64C2746
    • B64C27/46B64C27/463B64C27/467Y10S416/02
    • A blade root portion of a rotor blade is attached to a rotor head for rotating. A center portion linearly elongates from the blade root portion. A blade tip portion outward elongates from the center portion and has a shape which is defined by a leading edge, a side edge and a trailing edge, and has a predetermined aerofoil. In the leading edge of the blade tip portion, a swept-back angle &lgr;(r) at a distance r from the rotation center of a rotor satisfies relational expression (1) of a rotor blade length R of a rotorcraft, a maximum flight Mach number M∞ which is a flight limit speed of the rotorcraft, a blade tip Mach number MTIP which is a tip speed during hovering, and a drag divergence Mach number Mdd which is determined from the aerofoil of the blade tip portion. According to this configuration, it is possible to provide a rotor blade for a rotorcraft in which the performance in high-speed flying is improved, the high-speed impulsive noise can be reduced, and a high control performance is attained.
    • 转子叶片的叶片根部附接到转子头部用于旋转。 中心部分从叶片根部线性延伸。 叶片尖端部分从中心部分向外延伸并且具有由前缘,侧边缘和后缘限定的形状,并且具有预定的机翼。 在叶片尖端部分的前缘中,与转子旋转中心距离r的扫掠角lambd(r)满足旋翼飞机转子叶片长度R的关系式(1),最大飞行马赫数 数字Minfin是旋翼航空器的飞行极限速度,作为悬停期间的尖端速度的叶片尖端马赫数MTIP,以及从叶片尖端部分的翼面确定的牵引发散马赫数Mdd。 根据该结构,能够提供用于旋转飞行器的转子叶片,其中提高了高速飞行的性能,可以降低高速冲击噪声,并且实现了高的控制性能。