会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Effect translation and assessment among microarchitecture components
    • 微架构组件之间的效果翻译和评估
    • US08874893B2
    • 2014-10-28
    • US13429587
    • 2012-03-26
    • Bulent AbaliMichael S. FloydEren Kursun
    • Bulent AbaliMichael S. FloydEren Kursun
    • G06F9/00G06F1/00G06F1/32G06F15/00G06F3/00
    • G06F11/3024G06F11/3058G06F11/3062G06F11/3409G06F11/3433G06F11/348G06F2209/501G06F2209/508
    • Awareness of the relationships among the operating parameters for an individual core and among cores allows dynamic and intelligent management of the multi-core system. The relationships among operating parameters and cores, which can be somewhat opaque, are established with design-time simulations, and adapted with run time data collected from operation of the multi-core system. The relationships are expressed with functions that translate between operating parameters, between different cores, and between operating parameters of different cores. These functions are embodied in circuitry built into the multi-core system. The circuitry will be referred to hereinafter as a translator unit. The translator unit traverses the complex relational dependencies among multiple operating parameters and multiple cores, and determines an outcome with respect to one or more constraints corresponding to those operating parameters and cores.
    • 意识到单个核心和核心的运行参数之间的关系允许多核系统的动态和智能管理。 可以通过设计时模拟建立操作参数和核心之间的关系,这些关系可能有些不透明,并且适用于从多核系统运行收集的运行时数据。 这些关系用转换操作参数,不同内核之间以及不同内核的操作参数之间的函数表示。 这些功能体现在内置于多核系统中的电路中。 电路在下文中将被称为翻译单元。 翻译器单元遍历多个操作参数和多个核心之间的复杂关系依赖关系,并且确定与这些操作参数和核心相对应的一个或多个约束的结果。
    • 6. 发明授权
    • Temperature-controlled 3-dimensional bus placement
    • 温控三维总线布置
    • US08141020B2
    • 2012-03-20
    • US12493599
    • 2009-06-29
    • Philip G. EmmaEren KursunJude A. Rivers
    • Philip G. EmmaEren KursunJude A. Rivers
    • G06F17/50
    • G06F17/5072
    • Block placement within each device-containing layer is optimized under the constraint of a simultaneous optimization of interlayer connectivity between the device-containing layer and immediately adjacent device-containing layers. For each functional block within the device-containing layer, lateral heat flow is calculated to laterally adjacent functional blocks. If the lateral heat flow is less than a threshold value for a pair of adjacent functional blocks, placement of the functional blocks and/or interlayer interconnect structure array therebetween or modification of the interlayer interconnect structure array is performed. This routine is repeated for all adjacent pairs of functional blocks in each of the device-containing layers. Subsequently, block placement within each device-containing layer may be optimized under the constraint of a simultaneous optimization of interlayer connectivity across all device-containing layers. This method provides a design having sufficient lateral heat flow in each of the device-containing layers in a semiconductor chip.
    • 在包含装置的层和紧邻相邻的装置层之间的层间连通性的同时优化的限制下,在每个含有装置的层内的块放置被优化。 对于含有装置的层内的每个功能块,横向热流被计算为横向相邻的功能块。 如果侧向热流小于一对相邻功能块的阈值,则在其间布置功能块和/或层间互连结构阵列或者修改层间互连结构阵列。 对于每个含设备的层中的所有相邻的功能块对,重复此例程。 随后,可以在跨所有含有装置的层的层间连接的同时优化的约束下优化在每个包含装置的层内的块放置。 该方法提供了在半导体芯片中的每个含有器件的层中具有足够的横向热流的设计。