会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • LOW LOSS SIC MOSFET
    • 低损耗SIC MOSFET
    • US20130256698A1
    • 2013-10-03
    • US13195632
    • 2011-08-01
    • Dumitru SdrullaBruce OdekirkMarc Vandenberg
    • Dumitru SdrullaBruce OdekirkMarc Vandenberg
    • H01L29/78H01L21/336
    • H01L29/66666H01L21/049H01L29/0878H01L29/1095H01L29/1608H01L29/42368H01L29/66068H01L29/7395H01L29/7802
    • A Vertical Multiple Implanted Silicon Carbide Power MOSFET (VMIMOSFET) includes a first conductivity semiconductor substrate, a first conductivity semiconductor drift layer on the top of the substrate, a multitude of second conductivity layers implanted in the drift layer. The body layer is where the channel is formed. A first conductivity source layer is interspaced appropriately inside of the second conductivity layers. A gate oxide of a certain thickness and another oxide of a different thickness, a greater thickness than the gate oxide, placed in between the body layers but in such way that its shape does not distort the gate oxide in the channel. A charge compensated body layer of the second conductivity formed outside of the channel region and only at specific high electric field locations in the structure. The device and the manufacturing method deliver a power SiC MOSFET with increased frequency of operation and reduced switching losses.
    • 垂直多重注入碳化硅功率MOSFET(VMIMOSFET)包括第一导电半导体衬底,衬底顶部上的第一导电半导体漂移层,注入漂移层中的多个第二导电层。 身体层是形成通道的地方。 第一导电源层在第二导电层内适当地间隔开。 具有一定厚度的栅极氧化物和不同厚度的另一种氧化物,比栅极氧化物更大的厚度,放置在主体层之间,但是使得其形状不使通道中的栅极氧化物变形。 第二导电体的电荷补偿体层形成在沟道区域外部,并且仅在该结构中的特定高电场位置。 该器件和制造方法提供功率SiC MOSFET,具有更高的工作频率和更低的开关损耗。
    • 7. 发明申请
    • EDGE TERMINATION FOR HIGH VOLTAGE SEMICONDUCTOR DEVICE
    • 高压半导体器件的边沿端接
    • US20090072340A1
    • 2009-03-19
    • US12206954
    • 2008-09-09
    • Jinshu ZhangDumitru SdrullaDah Wen Tsang
    • Jinshu ZhangDumitru SdrullaDah Wen Tsang
    • H01L29/06H01L21/76
    • H01L29/66712H01L21/761H01L29/0619H01L29/0638H01L29/0878H01L29/404H01L29/7811
    • High voltage semiconductor devices with high-voltage termination structures are constructed on lightly doped substrates. Lightly doped p-type substrates are particularly prone to depletion and inversion from positive charges, degrading the ability of associated termination structures to block high voltages. To improve the efficiency and stability of termination structures, second termination regions of the same dopant type as the substrate, more heavily doped than the substrate but more lightly doped than first termination regions, are positioned adjoining the first termination regions. The second termination regions raise the field threshold voltage where the surface is vulnerable and render the termination structure substantially insensitive to positive charges at the surface. The use of higher dopant concentration in the gap region without causing premature avalanche is facilitated by only creating second termination regions for regions lacking field plate protection.
    • 具有高电压端接结构的高电压半导体器件构造在轻掺杂衬底上。 轻掺杂的p型衬底特别容易从正电荷中消耗和反转,降低了相关终端结构阻挡高电压的能力。 为了提高端接结构的效率和稳定性,与衬底相同的掺杂剂类型的第二端接区域比衬底更重掺杂,但是比第一端接区域更轻掺杂的位置与第一端接区域相邻。 第二终端区域提高了表面易受伤害的场阈值电压,并使端接结构对表面的正电荷基本上不敏感。 通过仅为缺少场板保护的区域创建第二终止区域,便于促进间隙区域中较高掺杂剂浓度而不引起过早雪崩。
    • 8. 发明授权
    • IGBT device with platinum lifetime control and reduced gaw
    • IGBT器件具有铂寿命控制和减少的gaw
    • US5528058A
    • 1996-06-18
    • US329974
    • 1994-10-13
    • Douglas A. Pike, Jr.Dah W. TsangJames M. KatanaDumitru Sdrulla
    • Douglas A. Pike, Jr.Dah W. TsangJames M. KatanaDumitru Sdrulla
    • H01L21/033H01L21/22H01L21/266H01L21/3065H01L21/331H01L21/336H01L29/06H01L29/10H01L29/40H01L29/417H01L29/739H01L29/745H01L29/749H01L29/78H01L29/74H01L31/111
    • H01L29/408H01L21/033H01L21/221H01L21/266H01L21/3065H01L29/0619H01L29/1095H01L29/41741H01L29/6634H01L29/7396H01L29/7455H01L29/749H01L29/7802H01L29/41766H01L29/66545
    • For IGBT, MCT or like devices, the substrate is formed with P+, N+ and N- layers and PN diffusions to define body and source regions in the N-layer and a MOS-gated channel at the upper surface. The N-layer is sized and doped (.about.10.sup.14 /cm.sup.3) to block reverse bias voltage. The N+ layer is >20 .mu.m thick and doped below .about.10.sup.17 /cm.sup.3 but above the N- doping to enhance output impedance and reduce gain at high V.sub.ce conditions. Or the N+ layer is formed with a thin (.about.5 .mu.m) highly doped (>10.sup.17 /cm.sup.3) layer and a thick (>20 .mu.m) layer of .about.10.sup.16 /cm.sup.3 doping. A platinum dose of 10.sup.13 to 10.sup.16 /cm.sup.3 is ion implanted and diffused into the silicon to effect lifetime control. Gate and source contacts and body and source diffusions have an inter-digitated finger pattern with complementary tapers to minimize current crowding and wide gate buses to minimize signal delay. P+ doping beneath and marginally surrounding the gate pads and main gate bus negates breakdown conditions in widely spaced body regions and convex localities at the source finger end. Wide secondary gate buses parallel to the gate fingers have a P+ doped central stripe and transverse shorting bars spaced along their length. A non-polarizable PECVD passivation film of low phosphorus PSG and nitride or oxynitride or of oxynitride alone is made by controlling ionized gas residence time, silane partial pressure, and oxygen ratio during deposition, to minimize incorporation of Si--H into the film.
    • 对于IGBT,MCT等器件,衬底由P +,N +和N-层和PN扩散形成,以限定N层中的主体和源极区域以及上表面的MOS栅极通道。 N层的尺寸和掺杂(DIFFERENCE 1014 / cm3)以阻止反向偏置电压。 N +层厚度>20μm,掺杂低于DIFFERENCE 1017 / cm3,但高于N-掺杂,以增强输出阻抗,并降低高Vce条件下的增益。 或者N +层形成为具有高(DIFFERENCE5μm)的高掺杂(> 1017 / cm3)层和厚(>20μm)DIFFERENCE 1016 / cm3掺杂的层。 离子注入1013至1016 / cm2的铂剂量并扩散到硅中以实现寿命控制。 栅极和源极触点以及主体和源极扩散具有互补锥形的数字化指状图案,以最小化电流拥挤和宽栅极总线以最小化信号延迟。 在栅极焊盘和主栅极总线下面和边缘周围的P +掺杂不利于在源极端部处的宽间隔的体区域和凸起位置中的击穿条件。 平行于栅极指的宽二级栅极总线具有P +掺杂的中心条和沿其长度间隔开的横向短路条。 通过在沉积期间控制离子化的气体停留时间,硅烷分压和氧气比例来制备低磷PSG和氮化物或氧氮化物或氮氧化物或单独的氮氧化物的不可极化的PECVD钝化膜,以最小化Si-H到薄膜中的掺入。
    • 9. 发明授权
    • Low loss SiC MOSFET
    • 低损耗SiC MOSFET
    • US08674439B2
    • 2014-03-18
    • US13195632
    • 2011-08-01
    • Dumitru SdrullaBruce OdekirkMarc Vandenberg
    • Dumitru SdrullaBruce OdekirkMarc Vandenberg
    • H01L29/78
    • H01L29/66666H01L21/049H01L29/0878H01L29/1095H01L29/1608H01L29/42368H01L29/66068H01L29/7395H01L29/7802
    • A Vertical Multiple Implanted Silicon Carbide Power MOSFET (VMIMOSFET) includes a first conductivity semiconductor substrate, a first conductivity semiconductor drift layer on the top of the substrate, a multitude of second conductivity layers implanted in the drift layer. The body layer is where the channel is formed. A first conductivity source layer is interspaced appropriately inside of the second conductivity layers. A gate oxide of a certain thickness and another oxide of a different thickness, a greater thickness than the gate oxide, placed in between the body layers but in such way that its shape does not distort the gate oxide in the channel. A charge compensated body layer of the second conductivity formed outside of the channel region and only at specific high electric field locations in the structure. The device and the manufacturing method deliver a power SiC MOSFET with increased frequency of operation and reduced switching losses.
    • 垂直多重注入碳化硅功率MOSFET(VMIMOSFET)包括第一导电半导体衬底,衬底顶部上的第一导电半导体漂移层,注入漂移层中的多个第二导电层。 身体层是形成通道的地方。 第一导电源层在第二导电层内适当地间隔开。 具有一定厚度的栅极氧化物和不同厚度的另一种氧化物,比栅极氧化物更大的厚度,放置在主体层之间,但是使得其形状不使通道中的栅极氧化物变形。 第二导电体的电荷补偿体层形成在沟道区域外部,并且仅在该结构中的特定高电场位置。 该器件和制造方法提供功率SiC MOSFET,具有更高的工作频率和更低的开关损耗。
    • 10. 发明授权
    • Edge termination for high voltage semiconductor device
    • 高压半导体器件的边缘端接
    • US08110888B2
    • 2012-02-07
    • US12206954
    • 2008-09-09
    • Jinshu ZhangDumitru SdrullaDah Wen Tsang
    • Jinshu ZhangDumitru SdrullaDah Wen Tsang
    • H01L23/58H01L21/765
    • H01L29/66712H01L21/761H01L29/0619H01L29/0638H01L29/0878H01L29/404H01L29/7811
    • High voltage semiconductor devices with high-voltage termination structures are constructed on lightly doped substrates. Lightly doped p-type substrates are particularly prone to depletion and inversion from positive charges, degrading the ability of associated termination structures to block high voltages. To improve the efficiency and stability of termination structures, second termination regions of the same dopant type as the substrate, more heavily doped than the substrate but more lightly doped than first termination regions, are positioned adjoining the first termination regions. The second termination regions raise the field threshold voltage where the surface is vulnerable and render the termination structure substantially insensitive to positive charges at the surface. The use of higher dopant concentration in the gap region without causing premature avalanche is facilitated by only creating second termination regions for regions lacking field plate protection.
    • 具有高电压端接结构的高电压半导体器件构造在轻掺杂衬底上。 轻掺杂的p型衬底特别容易从正电荷中消耗和反转,降低了相关终端结构阻挡高电压的能力。 为了提高端接结构的效率和稳定性,与衬底相同的掺杂剂类型的第二端接区域比衬底更重掺杂,但是比第一端接区域更轻掺杂的位置与第一端接区域相邻。 第二终端区域提高了表面易受伤害的场阈值电压,并使端接结构对表面的正电荷基本上不敏感。 通过仅为缺少场板保护的区域创建第二终止区域,便于促进间隙区域中较高掺杂剂浓度而不引起过早雪崩。